Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Proc Natl Acad Sci U S A ; 117(20): 10848-10855, 2020 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-32371486

RESUMEN

Grapevine fanleaf virus (GFLV) is a picorna-like plant virus transmitted by nematodes that affects vineyards worldwide. Nanobody (Nb)-mediated resistance against GFLV has been created recently, and shown to be highly effective in plants, including grapevine, but the underlying mechanism is unknown. Here we present the high-resolution cryo electron microscopy structure of the GFLV-Nb23 complex, which provides the basis for molecular recognition by the Nb. The structure reveals a composite binding site bridging over three domains of one capsid protein (CP) monomer. The structure provides a precise mapping of the Nb23 epitope on the GFLV capsid in which the antigen loop is accommodated through an induced-fit mechanism. Moreover, we uncover and characterize several resistance-breaking GFLV isolates with amino acids mapping within this epitope, including C-terminal extensions of the CP, which would sterically interfere with Nb binding. Escape variants with such extended CP fail to be transmitted by nematodes linking Nb-mediated resistance to vector transmission. Together, these data provide insights into the molecular mechanism of Nb23-mediated recognition of GFLV and of virus resistance loss.


Asunto(s)
Nepovirus/efectos de los fármacos , Enfermedades de las Plantas/inmunología , Anticuerpos de Cadena Única/química , Anticuerpos de Cadena Única/farmacología , Animales , Anticuerpos Antivirales/inmunología , Cápside/química , Proteínas de la Cápside/química , Proteínas de la Cápside/efectos de los fármacos , Microscopía por Crioelectrón , Epítopos/química , Modelos Moleculares , Nematodos/virología , Nepovirus/ultraestructura , Enfermedades de las Plantas/virología , Hojas de la Planta/virología , Virus de Plantas/inmunología , Virus de Plantas/fisiología , Conformación Proteica , Vitis
3.
Plant Biotechnol J ; 16(2): 660-671, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-28796912

RESUMEN

Since their discovery, single-domain antigen-binding fragments of camelid-derived heavy-chain-only antibodies, also known as nanobodies (Nbs), have proven to be of outstanding interest as therapeutics against human diseases and pathogens including viruses, but their use against phytopathogens remains limited. Many plant viruses including Grapevine fanleaf virus (GFLV), a nematode-transmitted icosahedral virus and causal agent of fanleaf degenerative disease, have worldwide distribution and huge burden on crop yields representing billions of US dollars of losses annually, yet solutions to combat these viruses are often limited or inefficient. Here, we identified a Nb specific to GFLV that confers strong resistance to GFLV upon stable expression in the model plant Nicotiana benthamiana and also in grapevine rootstock, the natural host of the virus. We showed that resistance was effective against a broad range of GFLV isolates independently of the inoculation method including upon nematode transmission but not against its close relative, Arabis mosaic virus. We also demonstrated that virus neutralization occurs at an early step of the virus life cycle, prior to cell-to-cell movement. Our findings will not only be instrumental to confer resistance to GFLV in grapevine, but more generally they pave the way for the generation of novel antiviral strategies in plants based on Nbs.


Asunto(s)
Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/virología , Nepovirus/patogenicidad , Virus de Plantas/genética , Virus de Plantas/fisiología , Anticuerpos de Dominio Único/genética , Anticuerpos de Dominio Único/fisiología
4.
Nucleic Acids Res ; 41(4): 2698-708, 2013 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-23275545

RESUMEN

In the mammalian mitochondrial translation apparatus, the proteins and their partner RNAs are coded by two genomes. The proteins are nuclear-encoded and resemble their homologs, whereas the RNAs coming from the rapidly evolving mitochondrial genome have lost critical structural information. This raises the question of molecular adaptation of these proteins to their peculiar partner RNAs. The crystal structure of the homodimeric bacterial-type human mitochondrial aspartyl-tRNA synthetase (DRS) confirmed a 3D architecture close to that of Escherichia coli DRS. However, the mitochondrial enzyme distinguishes by an enlarged catalytic groove, a more electropositive surface potential and an alternate interaction network at the subunits interface. It also presented a thermal stability reduced by as much as 12°C. Isothermal titration calorimetry analyses revealed that the affinity of the mitochondrial enzyme for cognate and non-cognate tRNAs is one order of magnitude higher, but with different enthalpy and entropy contributions. They further indicated that both enzymes bind an adenylate analog by a cooperative allosteric mechanism with different thermodynamic contributions. The larger flexibility of the mitochondrial synthetase with respect to the bacterial enzyme, in combination with a preserved architecture, may represent an evolutionary process, allowing nuclear-encoded proteins to cooperate with degenerated organelle RNAs.


Asunto(s)
Aspartato-ARNt Ligasa/química , Proteínas de Escherichia coli/química , Escherichia coli/enzimología , Mitocondrias/enzimología , Termodinámica , Aspartato-ARNt Ligasa/metabolismo , Estabilidad de Enzimas , Proteínas de Escherichia coli/metabolismo , Humanos , Modelos Moleculares , ARN de Transferencia/metabolismo
5.
Nucleic Acids Res ; 40(11): 4965-76, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22362756

RESUMEN

Helicobacter pylori catalyzes Asn-tRNA(Asn) formation by use of the indirect pathway that involves charging of Asp onto tRNA(Asn) by a non-discriminating aspartyl-tRNA synthetase (ND-AspRS), followed by conversion of the mischarged Asp into Asn by the GatCAB amidotransferase. We show that the partners of asparaginylation assemble into a dynamic Asn-transamidosome, which uses a different strategy than the Gln-transamidosome to prevent the release of the mischarged aminoacyl-tRNA intermediate. The complex is described by gel-filtration, dynamic light scattering and kinetic measurements. Two strategies for asparaginylation are shown: (i) tRNA(Asn) binds GatCAB first, allowing aminoacylation and immediate transamidation once ND-AspRS joins the complex; (ii) tRNA(Asn) is bound by ND-AspRS which releases the Asp-tRNA(Asn) product much slower than the cognate Asp-tRNA(Asp); this kinetic peculiarity allows GatCAB to bind and transamidate Asp-tRNA(Asn) before its release by the ND-AspRS. These results are discussed in the context of the interrelation between the Asn and Gln-transamidosomes which use the same GatCAB in H. pylori, and shed light on a kinetic mechanism that ensures faithful codon reassignment for Asn.


Asunto(s)
Aspartato-ARNt Ligasa/metabolismo , Helicobacter pylori/enzimología , Transferasas de Grupos Nitrogenados/metabolismo , ARN de Transferencia de Asparagina/metabolismo , Aminoacilación de ARN de Transferencia , Asparagina/metabolismo , Ácido Aspártico/metabolismo , Código Genético , Cinética , ARN de Transferencia de Aspártico/metabolismo
6.
PLoS Pathog ; 7(5): e1002034, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21625570

RESUMEN

Many animal and plant viruses rely on vectors for their transmission from host to host. Grapevine fanleaf virus (GFLV), a picorna-like virus from plants, is transmitted specifically by the ectoparasitic nematode Xiphinema index. The icosahedral capsid of GFLV, which consists of 60 identical coat protein subunits (CP), carries the determinants of this specificity. Here, we provide novel insight into GFLV transmission by nematodes through a comparative structural and functional analysis of two GFLV variants. We isolated a mutant GFLV strain (GFLV-TD) poorly transmissible by nematodes, and showed that the transmission defect is due to a glycine to aspartate mutation at position 297 (Gly297Asp) in the CP. We next determined the crystal structures of the wild-type GFLV strain F13 at 3.0 Å and of GFLV-TD at 2.7 Å resolution. The Gly297Asp mutation mapped to an exposed loop at the outer surface of the capsid and did not affect the conformation of the assembled capsid, nor of individual CP molecules. The loop is part of a positively charged pocket that includes a previously identified determinant of transmission. We propose that this pocket is a ligand-binding site with essential function in GFLV transmission by X. index. Our data suggest that perturbation of the electrostatic landscape of this pocket affects the interaction of the virion with specific receptors of the nematode's feeding apparatus, and thereby severely diminishes its transmission efficiency. These data provide a first structural insight into the interactions between a plant virus and a nematode vector.


Asunto(s)
Proteínas de la Cápside/genética , Nematodos/virología , Nepovirus , Estructura Cuaternaria de Proteína , Sustitución de Aminoácidos , Animales , Cápside , Mutación , Nepovirus/genética , Nepovirus/metabolismo , Nepovirus/ultraestructura , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/virología , Virus de Plantas/genética , ARN Viral/genética , Alineación de Secuencia , Análisis de Secuencia de Proteína , Electricidad Estática , Difracción de Rayos X
7.
Nucleic Acids Res ; 39(21): 9306-15, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21813455

RESUMEN

In many bacteria and archaea, an ancestral pathway is used where asparagine and glutamine are formed from their acidic precursors while covalently linked to tRNA(Asn) and tRNA(Gln), respectively. Stable complexes formed by the enzymes of these indirect tRNA aminoacylation pathways are found in several thermophilic organisms, and are called transamidosomes. We describe here a transamidosome forming Gln-tRNA(Gln) in Helicobacter pylori, an ε-proteobacterium pathogenic for humans; this transamidosome displays novel properties that may be characteristic of mesophilic organisms. This ternary complex containing the non-canonical GluRS2 specific for Glu-tRNA(Gln) formation, the tRNA-dependent amidotransferase GatCAB and tRNA(Gln) was characterized by dynamic light scattering. Moreover, we observed by interferometry a weak interaction between GluRS2 and GatCAB (K(D) = 40 ± 5 µM). The kinetics of Glu-tRNA(Gln) and Gln-tRNA(Gln) formation indicate that conformational shifts inside the transamidosome allow the tRNA(Gln) acceptor stem to interact alternately with GluRS2 and GatCAB despite their common identity elements. The integrity of this dynamic transamidosome depends on a critical concentration of tRNA(Gln), above which it dissociates into separate GatCAB/tRNA(Gln) and GluRS2/tRNA(Gln) complexes. Ester bond protection assays show that both enzymes display a good affinity for tRNA(Gln) regardless of its aminoacylation state, and support a mechanism where GluRS2 can hydrolyze excess Glu-tRNA(Gln), ensuring faithful decoding of Gln codons.


Asunto(s)
Glutamato-ARNt Ligasa/metabolismo , Helicobacter pylori/enzimología , Transferasas de Grupos Nitrogenados/metabolismo , Aminoacil-ARN de Transferencia/metabolismo , ARN de Transferencia de Glutamina/metabolismo , Helicobacter pylori/genética , Hidrólisis , Interferometría , Cinética , Modelos Biológicos , Estabilidad del ARN
8.
J Struct Biol ; 174(2): 344-51, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21352920

RESUMEN

The small icosahedral plant RNA nepovirus Grapevine fanleaf virus (GFLV) is specifically transmitted by a nematode and causes major damage to vineyards worldwide. To elucidate the molecular mechanisms underlying the recognition between the surface of its protein capsid and cellular components of its vector, host and viral proteins synthesized upon infection, the wild type GFLV strain F13 and a natural mutant (GFLV-TD) carrying a Gly297Asp mutation were purified, characterized and crystallized. Subsequently, the geometry and volume of their crystals was optimized by establishing phase diagrams. GFLV-TD was twice as soluble as the parent virus in the crystallization solution and its crystals diffracted X-rays to a resolution of 2.7 Å. The diffraction limit of GFLV-F13 crystals was extended from 5.5 to 3 Å by growth in agarose gel. Preliminary crystallographic analyses indicate that both types of crystals are suitable for structure determination. Keys for the successful production of GFLV crystals include the rigorous quality control of virus preparations, crystal quality improvement using phase diagrams, and crystal lattice reinforcement by growth in agarose gel. These strategies are applicable to the production of well-diffracting crystals of other viruses and macromolecular assemblies.


Asunto(s)
Nepovirus/química , Vitis/virología , Cristalización , Cristalografía por Rayos X , Tamaño de la Partícula , Sefarosa/química , Solubilidad , Virión/química , Virión/aislamiento & purificación
9.
J Vis Exp ; (169)2021 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-33818565

RESUMEN

The preparation of well diffracting crystals and their handling before their X-ray analysis are two critical steps of biocrystallographic studies. We describe a versatile microfluidic chip that enables the production of crystals by the efficient method of counter-diffusion. The convection-free environment provided by the microfluidic channels is ideal for crystal growth and useful to diffuse a substrate into the active site of the crystalline enzyme. Here we applied this approach to the CCA-adding enzyme of the psychrophilic bacterium Planococcus halocryophilus in the presented example. After crystallization and substrate diffusion/soaking, the crystal structure of the enzyme:substrate complex was determined at room temperature by serial crystallography and the analysis of multiple crystals directly inside the chip. The whole procedure preserves the genuine diffraction properties of the samples because it requires no crystal handling.


Asunto(s)
Cristalización/métodos , Enzimas/química , Microfluídica/métodos
10.
Biophys J ; 98(11): 2544-53, 2010 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-20513398

RESUMEN

We report on the reversible association of anionic liposomes induced by an antimicrobial peptide (LAH4). The process has been characterized for mixed membranes of POPC and POPS at molar ratios of 1:1, 3:1, and 9:1. Although the vesicles remain in suspension in the presence of excess amounts of peptide, the addition of more lipids results in surface charge neutralization, aggregation of the liposomes, and formation of micrometer-sized structures that coexist in equilibrium with vesicles in suspension. At low ratios of anionic lipids, vesicle aggregation is a reversible process, and vesicle disassembly is observed upon inversion of the surface charge by further supplementation with anionic vesicles. In contrast, a different process, membrane fusion, occurs in the presence of high phosphatidylserine concentrations. Upon binding to membranes containing low POPS concentrations, the peptide adopts an in-plane alpha-helical structure, a secondary structure that is conserved during vesicle association and dissociation. Our finding that peptides are essential for vesicle aggregation contributes to a better understanding of the activity of antimicrobial peptides, and suggests an additional layer of complexity in membrane-protein lipid interactions.


Asunto(s)
Liposomas/química , Péptidos/química , Fosfatidilcolinas/química , Fosfatidilserinas/química , Péptidos Catiónicos Antimicrobianos , Dicroismo Circular/métodos , Luz , Membrana Dobles de Lípidos/química , Estructura Secundaria de Proteína , Dispersión de Radiación , Espectroscopía Infrarroja por Transformada de Fourier , Análisis Espectral/métodos
11.
Methods Mol Biol ; 2113: 189-215, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32006316

RESUMEN

Over the past two decades small-angle X-ray scattering (SAXS) has become a popular method to characterize solutions of biomolecules including ribonucleic acid (RNA). In an integrative structural approach, SAXS is complementary to crystallography, NMR, and electron microscopy and provides information about RNA architecture and dynamics. This chapter highlights the practical advantages of combining size-exclusion chromatography and SAXS at synchrotron facilities. It is illustrated by practical case studies of samples ranging from single hairpins and tRNA to a large IRES. The emphasis is also put on sample preparation which is a critical step of SAXS analysis and on optimized protocols for in vitro RNA synthesis ensuring the production of mg amount of pure and homogeneous molecules.


Asunto(s)
Cromatografía en Gel/instrumentación , ARN/química , Difracción de Rayos X/instrumentación , Modelos Moleculares , Dispersión del Ángulo Pequeño , Sincrotrones
12.
Lab Chip ; 9(10): 1412-21, 2009 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-19417908

RESUMEN

Microfluidic devices were designed to perform on micromoles of biological macromolecules and viruses the search and the optimization of crystallization conditions by counter-diffusion, as well as the on-chip analysis of crystals by X-ray diffraction. Chips composed of microchannels were fabricated in poly-dimethylsiloxane (PDMS), poly-methyl-methacrylate (PMMA) and cyclo-olefin-copolymer (COC) by three distinct methods, namely replica casting, laser ablation and hot embossing. The geometry of the channels was chosen to ensure that crystallization occurs in a convection-free environment. The transparency of the materials is compatible with crystal growth monitoring by optical microscopy. The quality of the protein 3D structures derived from on-chip crystal analysis by X-ray diffraction using a synchrotron radiation was used to identify the most appropriate polymers. Altogether the results demonstrate that for a novel biomolecule, all steps from the initial search of crystallization conditions to X-ray diffraction data collection for 3D structure determination can be performed in a single chip.


Asunto(s)
Cristalografía por Rayos X/instrumentación , Sustancias Macromoleculares/química , Técnicas Analíticas Microfluídicas/instrumentación , Cristalización , Dimetilpolisiloxanos/química , Polimetil Metacrilato/química
13.
Artículo en Inglés | MEDLINE | ID: mdl-19478435

RESUMEN

Thermus thermophilus deprived of asparagine synthetase synthesizes Asn on tRNA(Asn) via a tRNA-dependent pathway involving a nondiscriminating aspartyl-tRNA synthetase that charges Asp onto tRNA(Asn) prior to conversion of the Asp to Asn by GatCAB, a tRNA-dependent amidotransferase. This pathway also constitutes the route of Asn-tRNA(Asn) formation by bacteria and archaea deprived of asparaginyl-tRNA synthetase. The partners involved in tRNA-dependent Asn formation in T. thermophilus assemble into a ternary complex called the transamidosome. This particule produces Asn-tRNA(Asn) in the presence of free Asp, ATP and an amido-group donor. Crystals of the transamidosome from T. thermophilus were obtained in the presence of PEG 4000 in MES-NaOH buffer pH 6.5. They belonged to the primitive monoclinic space group P2(1), with unit-cell parameters a = 115.9, b = 214.0, c = 127.8 A, beta = 93.3 degrees . A complete data set was collected to 3 A resolution. Here, the isolation and crystallization of the transamidosome from T. thermophilus and preliminary crystallographic data are reported.


Asunto(s)
Asparagina/biosíntesis , Aspartato-ARNt Ligasa/química , Aspartato-ARNt Ligasa/metabolismo , ARN de Transferencia de Asparagina/biosíntesis , Ribonucleoproteínas/aislamiento & purificación , Ribonucleoproteínas/metabolismo , Aspartato-ARNt Ligasa/genética , Cristalización , Recolección de Datos , Escherichia coli/genética , Luz , Aminoacil-ARN de Transferencia/genética , Aminoacil-ARN de Transferencia/metabolismo , Dispersión de Radiación , Estadística como Asunto , Thermus thermophilus/genética , Thermus thermophilus/metabolismo , Aminoacilación de ARN de Transferencia , Difracción de Rayos X
14.
Structure ; 15(11): 1505-16, 2007 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-17997975

RESUMEN

We report the structure of a strictly mitochondrial human synthetase, namely tyrosyl-tRNA synthetase (mt-TyrRS), in complex with an adenylate analog at 2.2 A resolution. The structure is that of an active enzyme deprived of the C-terminal S4-like domain and resembles eubacterial TyrRSs with a canonical tyrosine-binding pocket and adenylate-binding residues typical of class I synthetases. Two bulges at the enzyme surface, not seen in eubacterial TyrRSs, correspond to conserved sequences in mt-TyrRSs. The synthetase electrostatic surface potential differs from that of other TyrRSs, including the human cytoplasmic homolog and the mitochondrial one from Neurospora crassa. The homodimeric human mt-TyrRS shows an asymmetry propagating from the dimer interface toward the two catalytic sites and extremities of each subunit. Mutagenesis of the catalytic domain reveals functional importance of Ser200 in line with an involvement of A73 rather than N1-N72 in tyrosine identity.


Asunto(s)
Mitocondrias/enzimología , Tirosina-ARNt Ligasa/química , Secuencia de Aminoácidos , Sitios de Unión , Cristalografía por Rayos X , Humanos , Modelos Moleculares , Datos de Secuencia Molecular , Conformación Proteica , ARN de Transferencia/química , ARN de Transferencia/metabolismo , Alineación de Secuencia , Tirosina-ARNt Ligasa/genética , Tirosina-ARNt Ligasa/metabolismo
15.
ACS Infect Dis ; 5(6): 1022-1034, 2019 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-30912430

RESUMEN

Bacterial sliding clamps control the access of DNA polymerases to the replication fork and are appealing targets for antibacterial drug development. It is therefore essential to decipher the polymerase-clamp binding mode across various bacterial species. Here, two residues of the E. coli clamp binding pocket, EcS346 and EcM362, and their cognate residues in M. tuberculosis and B. subtilis clamps, were mutated. The effects of these mutations on the interaction of a model peptide with these variant clamps were evaluated by thermodynamic, molecular dynamics, X-rays crystallography, and biochemical analyses. EcM362 and corresponding residues in Gram positive clamps occupy a strategic position where a mobile residue is essential for an efficient peptide interaction. EcS346 has a more subtle function that modulates the pocket folding dynamics, while the equivalent residue in B. subtilis is essential for polymerase activity and might therefore be a Gram positive-specific molecular marker. Finally, the peptide binds through an induced-fit process to Gram negative and positive pockets, but the complex stability varies according to a pocket-specific network of interactions.


Asunto(s)
Antibacterianos/farmacología , Escherichia coli/efectos de los fármacos , Bacterias Grampositivas/efectos de los fármacos , Péptidos/farmacología , Cristalografía por Rayos X , ADN Polimerasa Dirigida por ADN/metabolismo , Desarrollo de Medicamentos , Escherichia coli/genética , Bacterias Grampositivas/genética , Ligandos , Modelos Moleculares , Mutación , Inhibidores de la Síntesis del Ácido Nucleico , Péptidos/química , Unión Proteica , Conformación Proteica
16.
IUCrJ ; 6(Pt 3): 454-464, 2019 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-31098026

RESUMEN

Determining optimal conditions for the production of well diffracting crystals is a key step in every biocrystallography project. Here, a microfluidic device is described that enables the production of crystals by counter-diffusion and their direct on-chip analysis by serial crystallography at room temperature. Nine 'non-model' and diverse biomacromolecules, including seven soluble proteins, a membrane protein and an RNA duplex, were crystallized and treated on-chip with a variety of standard techniques including micro-seeding, crystal soaking with ligands and crystal detection by fluorescence. Furthermore, the crystal structures of four proteins and an RNA were determined based on serial data collected on four synchrotron beamlines, demonstrating the general applicability of this multipurpose chip concept.

17.
Micron ; 39(4): 431-46, 2008 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-17466523

RESUMEN

UNLABELLED: The formation of 2D arrays of three small icosahedral RNA viruses with known 3D structures (tomato bushy stunt virus, turnip yellow mosaic virus and bromegrass mosaic virus) has been investigated to determine the role of each component of a negative staining solution containing ammonium molybdate and polyethylene glycol. Virion association was monitored by dynamic light scattering (DLS) and virus array formation was visualised by conventional transmission electron microscopy and cryo-electron microscopy after negative staining. The structural properties of viral arrays prepared in vitro were compared to those of microcrystals found in the leaves of infected plants. A novel form of macroscopic 3D crystals of turnip yellow mosaic virus has been grown in the negative staining solution. On the basis of the experimental results, the hypothesis is advanced that microscopic arrays might be planar crystallisation nuclei. The formation of 2D crystals and the enhancing effect of polyethylene glycol on the self-organisation of virions at the air/water interface are discussed. SYNOPSIS: The formation of 2D arrays of icosahedral viruses was investigated by spectroscopic and transmission electron microscopic methods.


Asunto(s)
Bromovirus/ultraestructura , Solanum lycopersicum/virología , Tombusvirus/ultraestructura , Tymovirus/ultraestructura , Cristalización , Luz , Microscopía Electrónica , Molibdeno/farmacología , Compuestos Organometálicos/farmacología , Polietilenglicoles/farmacología , Dispersión de Radiación
18.
Acta Crystallogr F Struct Biol Commun ; 74(Pt 11): 747-753, 2018 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-30387781

RESUMEN

The determination of conditions for the reproducible growth of well diffracting crystals is a critical step in every biocrystallographic study. On the occasion of a new structural biology project, several advanced crystallogenesis approaches were tested in order to increase the success rate of crystallization. These methods included screening by microseed matrix screening, optimization by counter-diffusion and crystal detection by trace fluorescent labeling, and are easily accessible to any laboratory. Their combination proved to be particularly efficient in the case of the target, a 48 kDa CCA-adding enzyme from the psychrophilic bacterium Planococcus halocryophilus. A workflow summarizes the overall strategy, which led to the production of crystals that diffracted to better than 2 Šresolution and may be of general interest for a variety of applications.


Asunto(s)
Proteínas Bacterianas/química , Cristalización/métodos , Planococcus (Bacteria)/enzimología , ARN Nucleotidiltransferasas/química , Cristalografía por Rayos X , Escherichia coli/genética , ARN Nucleotidiltransferasas/genética , ARN Nucleotidiltransferasas/metabolismo , Proteínas Recombinantes/genética , Flujo de Trabajo
19.
Artículo en Inglés | MEDLINE | ID: mdl-17401211

RESUMEN

Human mitochondrial tyrosyl-tRNA synthetase and a truncated version with its C-terminal S4-like domain deleted were purified and crystallized. Only the truncated version, which is active in tyrosine activation and Escherichia coli tRNA(Tyr) charging, yielded crystals suitable for structure determination. These tetragonal crystals, belonging to space group P4(3)2(1)2, were obtained in the presence of PEG 4000 as a crystallizing agent and diffracted X-rays to 2.7 A resolution. Complete data sets could be collected and led to structure solution by molecular replacement.


Asunto(s)
Mitocondrias/enzimología , Tirosina-ARNt Ligasa/química , Secuencia de Bases , Cristalización , Cristalografía por Rayos X , Cartilla de ADN , Humanos , Conformación Proteica
20.
Biochem Mol Biol Educ ; 35(4): 280-6, 2007 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21591106

RESUMEN

A practical hands-on course encompassing enzyme purification, biochemical characterization, and crystallization that completed the course work of 350 second-year bachelor students enrolled in molecular biology/biochemistry was given at the Université Louis Pasteur of Strasbourg (France). The experimental part of the practical dealt entirely with the model protein lysozyme isolated from hen egg-white. It was designed as a research project to give students the possibility to practice biochemical methods such as chromatography, electrophoresis, and spectrophotometry. It also included enzyme activity assay and protein crystal growth that are usually taught in master-level courses. The organization of the practical work and the related experimental procedures are described and discussed.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA