Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Mol Plant Microbe Interact ; 26(9): 991-1003, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23656333

RESUMEN

Heterotrimeric G-proteins, composed of Gα, Gß, and Gγ subunits, regulate many fundamental processes in plants. In animals, ligand binding to seven transmembrane (7TM) cell surface receptors designated G-protein coupled receptors (GPCR) leads to heterotrimeric G-protein activation. Because the plant G-protein complex is constitutively active, the exact role of plant 7TM proteins in this process is unclear. Members of the mildew resistance locus O (MLO) family represent the best-characterized 7TM plant proteins. Although genetic ablation of either MLO2 or G-proteins alters susceptibility to pathogens in Arabidopsis thaliana, it is unknown whether G-proteins directly couple signaling through MLO2. Here, we exploited two well-documented phenotypes of mlo2 mutants, broad-spectrum powdery mildew resistance and spontaneous callose deposition in leaf mesophyll cells, to assess the relationship of MLO2 proteins to the G-protein complex. Although our data reveal modulation of antifungal defense responses by Gß and Gγ subunits and a role for the Gγ1 subunit in mlo2-conditioned callose deposition, our findings overall are inconsistent with a role of MLO2 as a canonical GPCR. We discovered that mutants lacking the Gß subunit show delayed accumulation of a subset of defense-associated genes following exposure to the microbe-associated molecular pattern flg22. Moreover, Gß mutants were found to be hypersusceptible to spray inoculation with the bacterial pathogen Pseudomonas syringae.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Ascomicetos/fisiología , Enfermedades de las Plantas/inmunología , Pseudomonas syringae/fisiología , Arabidopsis/citología , Arabidopsis/microbiología , Arabidopsis/fisiología , Proteínas de Arabidopsis/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Resistencia a la Enfermedad , Subunidades beta de la Proteína de Unión al GTP/genética , Subunidades beta de la Proteína de Unión al GTP/metabolismo , Regulación de la Expresión Génica de las Plantas , Glucanos/metabolismo , Proteínas de Unión al GTP Heterotriméricas/genética , Proteínas de Unión al GTP Heterotriméricas/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Células del Mesófilo , Modelos Biológicos , Mutación , Fenotipo , Enfermedades de las Plantas/microbiología , Hojas de la Planta/citología , Hojas de la Planta/genética , Hojas de la Planta/microbiología , Hojas de la Planta/fisiología , Plantas Modificadas Genéticamente , Subunidades de Proteína , Especies Reactivas de Oxígeno/metabolismo , Plantones/citología , Plantones/genética , Plantones/microbiología , Plantones/fisiología , Transducción de Señal
2.
Plant Physiol ; 159(3): 975-83, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22570469

RESUMEN

The heterotrimeric G-protein complex provides signal amplification and target specificity. The Arabidopsis (Arabidopsis thaliana) Gß-subunit of this complex (AGB1) interacts with and modulates the activity of target cytoplasmic proteins. This specificity resides in the structure of the interface between AGB1 and its targets. Important surface residues of AGB1, which were deduced from a comparative evolutionary approach, were mutated to dissect AGB1-dependent physiological functions. Analysis of the capacity of these mutants to complement well-established phenotypes of Gß-null mutants revealed AGB1 residues critical for specific AGB1-mediated biological processes, including growth architecture, pathogen resistance, stomata-mediated leaf-air gas exchange, and possibly photosynthesis. These findings provide promising new avenues to direct the finely tuned engineering of crop yield and traits.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Subunidades beta de la Proteína de Unión al GTP/metabolismo , Transducción de Señal , Ácido Abscísico/farmacología , Agricultura , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Arabidopsis/microbiología , Flagelina/farmacología , Glucosa/farmacología , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Proteínas Mutantes/metabolismo , Mutación/genética , Fenotipo , Plantas Modificadas Genéticamente , Pliegue de Proteína/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/efectos de los fármacos , Propiedades de Superficie/efectos de los fármacos
3.
Mol Syst Biol ; 7: 532, 2011 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-21952135

RESUMEN

The heterotrimeric G-protein complex is minimally composed of Gα, Gß, and Gγ subunits. In the classic scenario, the G-protein complex is the nexus in signaling from the plasma membrane, where the heterotrimeric G-protein associates with heptahelical G-protein-coupled receptors (GPCRs), to cytoplasmic target proteins called effectors. Although a number of effectors are known in metazoans and fungi, none of these are predicted to exist in their canonical forms in plants. To identify ab initio plant G-protein effectors and scaffold proteins, we screened a set of proteins from the G-protein complex using two-hybrid complementation in yeast. After deep and exhaustive interrogation, we detected 544 interactions between 434 proteins, of which 68 highly interconnected proteins form the core G-protein interactome. Within this core, over half of the interactions comprising two-thirds of the nodes were retested and validated as genuine in planta. Co-expression analysis in combination with phenotyping of loss-of-function mutations in a set of core interactome genes revealed a novel role for G-proteins in regulating cell wall modification.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis , Pared Celular , Proteínas de Unión al GTP/metabolismo , Glicómica , Proteómica , Receptores Acoplados a Proteínas G/metabolismo , Transducción de Señal/genética , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Membrana Celular/genética , Membrana Celular/metabolismo , Pared Celular/genética , Pared Celular/metabolismo , Bases de Datos Genéticas , Proteínas de Unión al GTP/genética , Regulación de la Expresión Génica de las Plantas , Redes Reguladoras de Genes , Prueba de Complementación Genética , Genotipo , Inmunoprecipitación , Morfogénesis/genética , Fenotipo , Mapeo de Interacción de Proteínas , Receptores Acoplados a Proteínas G/genética , Técnicas del Sistema de Dos Híbridos
4.
J Biol Chem ; 285(50): 39140-9, 2010 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-20843791

RESUMEN

Plasma membrane compartmentalization spatiotemporally regulates cell-autonomous immune signaling in animal cells. To elucidate immediate early protein dynamics at the plant plasma membrane in response to the bacterial pathogen-associated molecular pattern (PAMP) flagellin (flg22) we employed quantitative mass spectrometric analysis on detergent-resistant membranes (DRMs) of Arabidopsis thaliana suspension cells. This approach revealed rapid and profound changes in DRM protein composition following PAMP treatment, prominently affecting proton ATPases and receptor-like kinases, including the flagellin receptor FLS2. We employed reverse genetics to address a potential contribution of a subset of these proteins in flg22-triggered cellular responses. Mutants of three candidates (DET3, AHA1, FER) exhibited a conspicuous defect in the PAMP-triggered accumulation of reactive oxygen species. In addition, these mutants showed altered mitogen-activated protein kinase (MAPK) activation, a defect in PAMP-triggered stomatal closure as well as altered bacterial infection phenotypes, which revealed three novel players in elicitor-dependent oxidative burst control and innate immunity. Our data provide evidence for dynamic elicitor-induced changes in the membrane compartmentalization of PAMP signaling components.


Asunto(s)
Arabidopsis/inmunología , Arabidopsis/microbiología , Membrana Celular/metabolismo , Proteínas de Arabidopsis , Detergentes/farmacología , Flagelina/química , Sistema Inmunológico , Inmunidad Innata , Sistema de Señalización de MAP Quinasas , Espectrometría de Masas/métodos , Microdominios de Membrana/química , Fosfotransferasas , Hojas de la Planta/microbiología , Proteómica/métodos , Especies Reactivas de Oxígeno , Estallido Respiratorio , ATPasas de Translocación de Protón Vacuolares
5.
Front Plant Sci ; 8: 1006, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28674541

RESUMEN

Loss of function mutations of particular plant MILDEW RESISTANCE LOCUS O (MLO) genes confer durable and broad-spectrum penetration resistance against powdery mildew fungi. Here, we combined genetic, transcriptomic and metabolomic analyses to explore the defense mechanisms in the fully resistant Arabidopsis thaliana mlo2 mlo6 mlo12 triple mutant. We found that this genotype unexpectedly overcomes the requirement for indolic antimicrobials and defense-related secretion, which are critical for incomplete resistance of mlo2 single mutants. Comparative microarray-based transcriptome analysis of mlo2 mlo6 mlo12 mutants and wild type plants upon Golovinomyces orontii inoculation revealed an increased and accelerated accumulation of many defense-related transcripts. Despite the biotrophic nature of the interaction, this included the non-canonical activation of a jasmonic acid/ethylene-dependent transcriptional program. In contrast to a non-adapted powdery mildew pathogen, the adapted powdery mildew fungus is able to defeat the accumulation of defense-relevant indolic metabolites in a MLO protein-dependent manner. We suggest that a broad and fast activation of immune responses in mlo2 mlo6 mlo12 plants can compensate for the lack of single or few defense pathways. In addition, our results point to a role of Arabidopsis MLO2, MLO6, and MLO12 in enabling defense suppression during invasion by adapted powdery mildew fungi.

6.
J Basic Microbiol ; 48(2): 99-103, 2008 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-18383232

RESUMEN

Farnesol was the first quorum-sensing regulator to be found in eukaryotic cells. In Candida albicans, a dimorphic fungal human pathogen, farnesol blocks the yeast-to-filamentous growth transition. Here we show that in Aspergillus niger farnesol acts as an inhibitor of conidiation: Colonies grown on media containing farnesol were unable to develop conidia. Although farnesol treated A. niger cultures exhibited a colony morphology resembling the "fluffy" phenotype of A. nidulans, which is caused by a hyperactive G-protein/cAMP pathway, the intracellular level of cAMP in A. niger mycelia grown in presence of farnesol is greatly diminished. Furthermore, whereas inhibiting adenylyl cyclase led to a farnesol-like effect, the addition of external cAMP inhibited conidiation without causing a "fluffy" phenotype. This suggests that the mechanisms regulating conidiation in A. niger and A. nidulans are different.


Asunto(s)
Aspergillus niger/efectos de los fármacos , Farnesol/farmacología , Morfogénesis/efectos de los fármacos , Esporas Fúngicas/efectos de los fármacos , Aspergillus niger/crecimiento & desarrollo , Farnesol/metabolismo , Hifa/efectos de los fármacos , Hifa/crecimiento & desarrollo , Morfogénesis/fisiología , Esporas Fúngicas/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA