Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Planta Med ; 83(14-15): 1130-1140, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28859216

RESUMEN

Herbal combination preparations are widely used in traditional herbal medicine and are even established as modern evidence-based herbal medicinal products. The rationale behind such combinations is often questioned and assessing the contribution of each of the combination partners to overall activity is challenging. STW 5 (Iberogast) is such a combination with confirmed clinical efficacy in functional gastrointestinal disorders. It consists of nine plant extracts responsible for its multitarget function in these multifactorial diseases with their heterogeneous and overlapping pathomechanisms. This makes the combination an ideal candidate for the use of the newly described method of stepwise cluster analysis, a standardized procedure to transfer heterogeneous pharmacological data, from different models, into effect size categories. This allows for a stepwise cluster formation starting from the level of single tests up to the level of different pathomechanisms involved in the development of a certain disease, in this case functional dyspepsia subtypes and irritable bowel syndrome. In the current article, an overview on the pharmacological data on STW 5 and its single components is provided. The data are further analyzed using stepwise cluster formation, resulting in a summary of the different modes of action of STW 5 along with an evaluation of the contribution of the single constituents to the overall multitarget effects of the herbal combination preparation.


Asunto(s)
Enfermedades Gastrointestinales/tratamiento farmacológico , Síndrome del Colon Irritable/tratamiento farmacológico , Fitoterapia , Extractos Vegetales/farmacología , Análisis por Conglomerados , Dispepsia/tratamiento farmacológico , Humanos , Medicina Tradicional
2.
BMJ Open Sport Exerc Med ; 2(1): e000191, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-28879033

RESUMEN

BACKGROUND: Systemic enzyme therapy may improve symptoms of exhaustive eccentric exercise due to anti-inflammatory properties. METHODS: In a randomised, placebo-controlled, two-stage clinical trial, systemic enzyme therapy (Wobenzym) was administered for 72 hours before and 72 hours following a day on which subjects performed an exhaustive eccentric exercise (isokinetic loading of the quadriceps). Efficacy criteria (maximal strength and pain) and time points were selected to account for the multidimensional nature of exercise-induced muscle damage symptoms. Subjects were randomised in a crossover (stage I, n=28) and parallel group design (stage II, n=44). RESULTS: Analysis of stage I data demonstrated a significant superiority (Mann-Whitney=0.6153; p=0.0332; one sided) for systemic enzyme therapy compared with placebo. Stage II was designed as a randomised controlled parallel group comparison. Heterogeneity (I2>0.5) between stages led to separate analyses of stage I (endurance-trained subjects) and stage II (strength-trained subjects). Combined analysis resulted in no evidence for corresponding treatment effects. Analysis of pooled biomarker data, however, demonstrated significant favourable effects for systemic enzyme therapy in both stages. CONCLUSION: Systemic enzyme therapy before and after exhaustive eccentric exercise resulted in higher maximal concentric strength in the less strength-trained subjects (stage I) and in significant favourable effects on biomarkers (inflammatory, metabolic and immune) in all subjects. The application of these findings needs further evaluation.

3.
Artículo en Inglés | MEDLINE | ID: mdl-22461953

RESUMEN

Research has confirmed that peptides and larger protein molecules pass through the mucosal barrier of the gastrointestinal tract. Orally administered serine and cysteine proteases of plant and animal origin also reach blood and lymph as intact, high molecular weight and physiologically active protein molecules. Their absorption may be supported by a self-enhanced paracellular transport mechanism resulting in sub-nanomolar concentration of transiently free protease molecules or, in a complex with anti-proteases, at higher concentrations. Data from pharmacokinetic investigations reveals dose linearity for maximum plasma levels of free proteases not unusual for body proteases and a high inter-individual variability. There is no interference with each other after oral administration of protease combinations, and absorption follows an unusual invasion and elimination kinetic due to slow velocity of absorption and a fast 100% protein binding to anti-proteases. Oral application of proteases leads to increased proteolytic serum activity and increased plasma concentrations of the corresponding anti-proteases. Their biological activity is determined by their proteolytic activity as free proteases on soluble peptides/proteins or cell surface receptors (e.g. protease activated receptors) and their activity in the complex formed with their specific and/or unspecific anti-proteases. The anti-protease-complexes, during immune reaction and injuries often loaded with different cytokines, are cleared from body fluids and tissue by receptor mediated endocytosis on hepatocytes and/or blood cells. Oral administration of enteric coated tablets containing proteolytic enzymes of plant and animal origin may be a safe method to stabilize, positively influence or enhance physiological and immunological processes during disease processes and in healthy consumers.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA