Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
J Physiol ; 598(22): 5091-5108, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32829489

RESUMEN

KEY POINTS: Heart failure (HF), the leading cause of death in developed countries, occurs in the setting of reduced (HFrEF) or preserved (HFpEF) ejection fraction. Unlike HFrEF, there are no effective treatments for HFpEF, which accounts for ∼50% of heart failure. Abnormal intracellular calcium dynamics in cardiomyocytes have major implications for contractility and rhythm, but compared to HFrEF, very little is known about calcium cycling in HFpEF. We used rat models of HFpEF and HFrEF to reveal distinct differences in intracellular calcium regulation and excitation-contraction (EC) coupling. While HFrEF is characterized by defective EC coupling at baseline, HFpEF exhibits enhanced coupling fidelity, further aggravated by a reduction in ß-adrenergic sensitivity. These differences in EC coupling and ß-adrenergic sensitivity may help explain why therapies that work in HFrEF are ineffective in HFpEF. ABSTRACT: Heart failure with reduced or preserved ejection fraction (respectively, HFrEF and HFpEF) is the leading cause of death in developed countries. Although numerous therapies improve outcomes in HFrEF, there are no effective treatments for HFpEF. We studied phenotypically verified rat models of HFrEF and HFpEF to compare excitation-contraction (EC) coupling and protein expression in these two forms of heart failure. Dahl salt-sensitive rats were fed a high-salt diet (8% NaCl) from 7 weeks of age to induce HFpEF. Impaired diastolic relaxation and preserved ejection fraction were confirmed in each animal echocardiographically, and clinical signs of heart failure were documented. To generate HFrEF, Sprague-Dawley (SD) rats underwent permanent left anterior descending coronary artery ligation which, 8-10 weeks later, led to systolic dysfunction (verified echocardiographically) and clinical signs of heart failure. Calcium (Ca2+ ) transients were measured in isolated cardiomyocytes under field stimulation or patch clamp. Ultra-high-speed laser scanning confocal imaging captured Ca2+ sparks evoked by voltage steps. Western blotting and PCR were used to assay changes in EC coupling protein and RNA expression. Cardiomyocytes from rats with HFrEF exhibited impaired EC coupling, including decreased Ca2+ transient (CaT) amplitude and defective couplon recruitment, associated with transverse (t)-tubule disruption. In stark contrast, HFpEF cardiomyocytes showed saturated EC coupling (increased ICa , high probability of couplon recruitment with greater Ca2+ release synchrony, increased CaT) and preserved t-tubule integrity. ß-Adrenergic stimulation of HFpEF myocytes with isoprenaline (isoproterenol) failed to elicit robust increases in ICa or CaT and relaxation kinetics. Fundamental differences in EC coupling distinguish HFrEF from HFpEF.


Asunto(s)
Insuficiencia Cardíaca , Adrenérgicos , Animales , Calcio , Pronóstico , Ratas , Ratas Endogámicas Dahl , Ratas Sprague-Dawley , Volumen Sistólico
2.
Genet Med ; 21(2): 441-450, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-29930394

RESUMEN

PURPOSE: Malignant hyperthermia (MH) is a pharmacogenetic disorder arising from uncontrolled muscle calcium release due to an abnormality in the sarcoplasmic reticulum (SR) calcium-release mechanism triggered by halogenated inhalational anesthetics. However, the molecular mechanisms involved are still incomplete. METHODS: We aimed to identify transient receptor potential vanilloid 1 (TRPV1) variants within the entire coding sequence in patients who developed sensitivity to MH of unknown etiology. In vitro and in vivo functional studies were performed in heterologous expression system, trpv1-/- mice, and a murine model of human MH. RESULTS: We identified TRPV1 variants in two patients and their heterologous expression in muscles of trpv1-/- mice strongly enhanced calcium release from SR upon halogenated anesthetic stimulation, suggesting they could be responsible for the MH phenotype. We confirmed the in vivo significance by using mice with a knock-in mutation (Y524S) in the type I ryanodine receptor (Ryr1), a mutation analogous to the Y522S mutation associated with MH in humans. We showed that the TRPV1 antagonist capsazepine slows the heat-induced hypermetabolic response in this model. CONCLUSION: We propose that TRPV1 contributes to MH and could represent an actionable therapeutic target for prevention of the pathology and also be responsible for MH sensitivity when mutated.


Asunto(s)
Señalización del Calcio , Predisposición Genética a la Enfermedad , Hipertermia Maligna/genética , Canales Catiónicos TRPV/genética , Anestésicos/farmacología , Animales , Calcio , Modelos Animales de Enfermedad , Femenino , Expresión Génica/efectos de los fármacos , Técnicas de Sustitución del Gen , Células HEK293 , Homeostasis , Humanos , Masculino , Hipertermia Maligna/metabolismo , Ratones , Ratones Endogámicos C57BL , Músculo Esquelético/metabolismo , Canales Catiónicos TRPV/metabolismo
3.
FASEB J ; 27(4): 1600-9, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23322163

RESUMEN

The endoplasmic reticulum (ER) is involved in many cellular functions, including protein folding and Ca(2+) homeostasis. The ability of cells to respond to the ER stress is critical for cell survival, and disruption in such regulation can lead to apoptosis. ER stress is accompanied by alterations in Ca(2+) homeostasis, and the ER Ca(2+) store depletion by itself can induce ER stress and apoptosis. Despite that, the ER Ca(2+) leak channels activated in response to the ER stress remain poorly characterized. Here we demonstrate that ER Ca(2+) depletion during the ER stress occurs via translocon, the ER protein complex involved in translation. Numerous ER stress inducers stimulate the ER Ca(2+) leak that can be prevented by translocon inhibitor, anisomycin. Expression of GRP78, an ER stress marker, increased following treatment with puromycin (a translocon opener) and was suppressed by anisomycin, confirming a primary role of translocon in ER stress induction. Inhibition of ER store depletion by anisomycin significantly reduces apoptosis stimulated by the ER stress inducers. We suggest that translocon opening is physiologically modulated by GRP78, particularly during the ER stress. The ability to modulate the ER Ca(2+) permeability and subsequent ER stress can lead to development of a novel therapeutic approach.


Asunto(s)
Apoptosis/fisiología , Calcio/metabolismo , Estrés del Retículo Endoplásmico/fisiología , Retículo Endoplásmico/metabolismo , Proteínas de Choque Térmico/metabolismo , Respuesta de Proteína Desplegada , Anisomicina/farmacología , Canales de Calcio/efectos de los fármacos , Canales de Calcio/metabolismo , Células Cultivadas , Retículo Endoplásmico/efectos de los fármacos , Chaperón BiP del Retículo Endoplásmico , Estrés del Retículo Endoplásmico/efectos de los fármacos , Homeostasis/fisiología , Humanos , Puromicina/farmacología , Respuesta de Proteína Desplegada/fisiología
4.
Heart Rhythm ; 21(5): 540-552, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38215808

RESUMEN

BACKGROUND: Spatiotemporal dispersion-guided ablation is a tailored approach for patients in persistent atrial fibrillation (PsAF). The characterization of dispersion extent and distribution and its association with common clinical descriptors of PsAF patients has not been studied. OBJECTIVES: Artificial intelligence-adjudicated dispersion extent and distribution (AI-DED) was obtained with a machine/deep learning classifier (VX1 Software, Volta Medical) in PsAF patients undergoing ablation. The purpose of this study was to test the hypothesis that AI-DED is unique to each patient and independent of common procedural and clinical parameters. METHODS: In a subanalysis of the Ev-AIFib study (NCT03434964), spatiotemporal dispersion maps were built with VX1 software in 78 consecutive persistent and long-standing PsAF patients. AI-DED was quantified using 2 distinct approaches (visual regional characterization or automated global quantification of AI-DED). RESULTS: AI-DED paired-subregion Euclidean distance measurements between 78 patients (average distance 5.07 ± 0.60; min 2.23; max 9.75) demonstrate that AI-DED is a patient-unique characteristic of PsAF. Importantly, both AF type and AF history do not correlate with AI-DED levels (R2 = 0.006, P = .53; and R2 = 0.03, P = .25, respectively). The most extensive AI-DED levels are not associated with poorer procedural (83%, 81%, and 83% of AF termination in low, medium, and high dispersion groups, respectively; P = .954) and long-term (88%, 75%, and 91% of freedom from AF/atrial tachycardia after multiple procedures; P = .517) outcomes. CONCLUSION: The atrial distribution and extent of multipolar electrogram spatiotemporal dispersion follow a nonrandom, albeit patient-unique, distribution in PsAF patients. AI-DED may represent a procedure-implementable fingerprint of the PsAF substrate.


Asunto(s)
Inteligencia Artificial , Fibrilación Atrial , Ablación por Catéter , Humanos , Fibrilación Atrial/fisiopatología , Fibrilación Atrial/cirugía , Fibrilación Atrial/diagnóstico , Femenino , Masculino , Persona de Mediana Edad , Ablación por Catéter/métodos , Anciano , Sistema de Conducción Cardíaco/fisiopatología , Electrocardiografía , Estudios de Seguimiento
5.
J Am Heart Assoc ; 10(17): e019273, 2021 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-34472363

RESUMEN

Background Sodium-calcium (Ca2+) exchanger isoform 1 (NCX1) is the dominant Ca2+ efflux mechanism in cardiomyocytes and is critical to maintaining Ca2+ homeostasis during excitation-contraction coupling. NCX1 activity has been implicated in the pathogenesis of cardiovascular diseases, but a lack of specific NCX1 blockers complicates experimental interpretation. Our aim was to develop a tamoxifen-inducible NCX1 knockout (KO) mouse to investigate compensatory adaptations of acute ablation of NCX1 on excitation-contraction coupling and intracellular Ca2+ regulation, and to examine whether acute KO of NCX1 confers resistance to triggered arrhythmia and ischemia/reperfusion injury. Methods and Results We used the α-myosin heavy chain promoter (Myh6)-MerCreMer promoter to create a tamoxifen-inducible cardiac-specific NCX1 KO mouse. Within 1 week of tamoxifen injection, NCX1 protein expression and current were dramatically reduced. Diastolic Ca2+ increased despite adaptive reductions in Ca2+ current and action potential duration and compensatory increases in excitation-contraction coupling gain, sarcoplasmic reticulum Ca2+ ATPase 2 and plasma membrane Ca2+ ATPase. As these adaptations progressed over 4 weeks, diastolic Ca2+ normalized and SR Ca2+ load increased. Left ventricular function remained normal, but mild fibrosis and hypertrophy developed. Transcriptomics revealed modification of cardiovascular-related gene networks including cell growth and fibrosis. NCX1 KO reduced spontaneous action potentials triggered by delayed afterdepolarizations and reduced scar size in response to ischemia/reperfusion. Conclusions Tamoxifen-inducible NCX1 KO mice adapt to acute genetic ablation of NCX1 by reducing Ca2+ influx, increasing alternative Ca2+ efflux pathways, and increasing excitation-contraction coupling gain to maintain contractility at the cost of mild Ca2+-activated hypertrophy and fibrosis and decreased survival. Nevertheless, KO myocytes are protected against spontaneous action potentials and ischemia/reperfusion injury.


Asunto(s)
Arritmias Cardíacas , Calcio , Miocitos Cardíacos , Daño por Reperfusión , Intercambiador de Sodio-Calcio , Animales , Arritmias Cardíacas/genética , Arritmias Cardíacas/prevención & control , Calcio/metabolismo , Fibrosis , Hipertrofia , Ratones , Ratones Noqueados , Contracción Miocárdica , Miocitos Cardíacos/metabolismo , Intercambiador de Sodio-Calcio/genética , Tamoxifeno/farmacología
6.
Life (Basel) ; 10(10)2020 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-33036239

RESUMEN

The transient receptor potential vanilloid 1 (TRPV1) belongs to the transient receptor potential superfamily of sensory receptors. TRPV1 is a non-selective cation channel permeable to Ca2+ that is capable of detecting noxious heat temperature and acidosis. In skeletal muscles, TRPV1 operates as a reticular Ca2+-leak channel and several TRPV1 mutations have been associated with two muscle disorders: malignant hyperthermia (MH) and exertional heat stroke (EHS). Although TRPV1-/- mice have been available since the 2000s, TRPV1's role in muscle physiology has not been thoroughly studied. Therefore, the focus of this work was to characterize the contractile phenotype of skeletal muscles of TRPV1-deficient mice at rest and after four weeks of exercise. As MS and EHS have a higher incidence in men than in women, we also investigated sex-related phenotype differences. Our results indicated that, without exercise, TRPV1-/- mice improved in vivo muscle strength with an impairment of skeletal muscle in vitro twitch features, i.e., delayed contraction and relaxation. Additionally, exercise appeared detrimental to TRPV1-/- slow-twitch muscles, especially in female animals.

7.
Cell Calcium ; 87: 102167, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32028091

RESUMEN

Na/Ca exchange is the dominant calcium (Ca) efflux mechanism in cardiac myocytes. Although our knowledge of exchanger function (NCX1 in the heart) was originally established using biochemical and electrophysiological tools such as cardiac sarcolemmal vesicles and the giant patch technique [1-4], many advances in our understanding of the physiological/pathophysiological roles of NCX1 in the heart have been obtained using a suite of genetically modified mice. Early mouse studies focused on modification of expression levels of NCX1 in the ventricles, with transgenic overexpressors, global NCX1 knockout (KO) mice (which were embryonic lethal if homozygous), and finally ventricular-specific NCX1 KO [5-12]. We found, to our surprise, that ventricular cardiomyocytes lacking NCX1 can survive and function by engaging a clever set of adaptations to minimize Ca entry, while maintaining contractile function through an increase in excitation-contraction (EC) coupling gain [5,6,13]. Having studied ventricular NCX1 ablation in detail, we more recently focused on elucidating the role of NCX1 in the atria through altering NCX1 expression. Using a novel atrial-specific NCX1 KO mouse, we found unexpected changes in atrial cell morphology and calcium handling, together with dramatic alterations in the function of sinoatrial node (SAN) pacemaker activity. In this review, we will discuss these findings and their implications for cardiac disease.


Asunto(s)
Relojes Biológicos , Calcio/metabolismo , Acoplamiento Excitación-Contracción , Atrios Cardíacos/metabolismo , Nodo Sinoatrial/metabolismo , Intercambiador de Sodio-Calcio/metabolismo , Sodio/metabolismo , Animales , Humanos
8.
JACC Basic Transl Sci ; 4(4): 509-523, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31468006

RESUMEN

This study aimed to identify a mechanism for statin-induced myopathy that explains its prevalence and selectivity for skeletal muscle, and to understand its interaction with moderate exercise. Statin-associated adverse muscle symptoms reduce adherence to statin therapy; this limits the effectiveness of statins in reducing cardiovascular risk. The issue is further compounded by perceived interactions between statin treatment and exercise. This study examined muscles from individuals taking statins and rats treated with statins for 4 weeks. In skeletal muscle, statin treatment caused dissociation of the stabilizing protein FK506 binding protein (FKBP12) from the sarcoplasmic reticulum (SR) calcium (Ca2+) release channel, the ryanodine receptor 1, which was associated with pro-apoptotic signaling and reactive nitrogen species/reactive oxygen species (RNS/ROS)-dependent spontaneous SR Ca2+ release events (Ca2+ sparks). Statin treatment had no effect on Ca2+ spark frequency in cardiac myocytes. Despite potentially deleterious effects of statins on skeletal muscle, there was no impact on force production or SR Ca2+ release in electrically stimulated muscle fibers. Statin-treated rats with access to a running wheel ran further than control rats; this exercise normalized FKBP12 binding to ryanodine receptor 1, preventing the increase in Ca2+ sparks and pro-apoptotic signaling. Statin-mediated RNS/ROS-dependent destabilization of SR Ca2+ handling has the potential to initiate skeletal (but not cardiac) myopathy in susceptible individuals. Importantly, although exercise increases RNS/ROS, it did not trigger deleterious statin effects on skeletal muscle. Indeed, our results indicate that moderate exercise might benefit individuals who take statins.

9.
Br J Pharmacol ; 175(6): 938-952, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29278865

RESUMEN

BACKGROUND AND PURPOSE: Statins are amongst the most widely prescribed drugs for those at risk of cardiovascular disease, lowering cholesterol levels by inhibiting 3-hydroxy-3-methylglutaryl (HMG)-CoA reductase. Although effective at preventing cardiovascular disease, statin use is associated with muscle weakness, myopathies and, occasionally, fatal rhabdomyolysis. As simvastatin, a commonly prescribed statin, promotes Ca2+ release from sarcoplasmic reticulum (SR) vesicles, we investigated if simvastatin directly activates skeletal (RyR1) and cardiac (RyR2) ryanodine receptors. EXPERIMENTAL APPROACH: RyR1 and RyR2 single-channel behaviour was investigated after incorporation of sheep cardiac or mouse skeletal SR into planar phospholipid bilayers under voltage-clamp conditions. LC-MS was used to monitor the kinetics of interconversion of simvastatin between hydroxy-acid and lactone forms during these experiments. Cardiac and skeletal myocytes were permeabilised to examine simvastatin modulation of SR Ca2+ release. KEY RESULTS: Hydroxy acid simvastatin (active at HMG-CoA reductase) significantly and reversibly increased RyR1 open probability (Po) and shifted the distribution of Ca2+ spark frequency towards higher values in skeletal fibres. In contrast, simvastatin reduced RyR2 Po and shifted the distribution of spark frequency towards lower values in ventricular cardiomyocytes. The lactone pro-drug form of simvastatin (inactive at HMG-CoA reductase) also activated RyR1, suggesting that the HMG-CoA inhibitor pharmacophore was not responsible for RyR1 activation. CONCLUSION AND IMPLICATIONS: Simvastatin interacts with RyR1 to increase SR Ca2+ release and thus may contribute to its reported adverse effects on skeletal muscle. The ability of low concentrations of simvastatin to reduce RyR2 Po may also protect against Ca2+ -dependent arrhythmias and sudden cardiac death.


Asunto(s)
Calcio/metabolismo , Inhibidores de Hidroximetilglutaril-CoA Reductasas/farmacología , Canal Liberador de Calcio Receptor de Rianodina/efectos de los fármacos , Simvastatina/análogos & derivados , Animales , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Fibras Musculares Esqueléticas/efectos de los fármacos , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/metabolismo , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Ratas , Ratas Wistar , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Retículo Sarcoplasmático/efectos de los fármacos , Retículo Sarcoplasmático/metabolismo , Ovinos , Simvastatina/farmacología
10.
Front Pharmacol ; 8: 203, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28469574

RESUMEN

The number of people taking statins is set to increase across the globe due to recent changes in prescription guidelines. For example, half the US population over 40 is now eligible for these drugs, whether they have high serum cholesterol or not. With such development in policy comes a stronger need for understanding statins' myriad of effects. Surprisingly little is known about possible direct actions of statins on cardiac myocytes, although claims of a direct myocardial toxicity have been made. Here, we determine the impact of simvastatin administration (40 mg/kg/day) for 2 weeks in normocholesterolemic rats on cardiac myocyte contractile function and identify an underlying mechanism. Under basal conditions, statin treatment increased the time to half (t0.5) relaxation without any effect on the magnitude of shortening, or the magnitude/kinetics of the [Ca2+]i transient. Enhanced myocyte lusitropy could be explained by a corresponding increase in phosphorylation of troponin I (TnI) at Ser23,24. Statin treatment increased expression of eNOS and Ser1177 phosphorylated eNOS, decreased expression of the NOS-inhibitory proteins caveolins 1 and 3, and increased (P = 0.06) NO metabolites, consistent with enhanced NO production. It is well-established that NO stimulates protein kinase G, one of the effectors of TnI phosphorylation at Ser23,24. Trends for parallel changes in phospho-TnI, phospho-eNOS and caveolin 1 expression were seen in atrial muscle from patients taking statins. Our data are consistent with a mechanism whereby chronic statin treatment enhances TnI phosphorylation and myocyte lusitropy through increased NO bioavailability. We see no evidence of impaired function with statin treatment; the changes we document at the level of the cardiac myocyte should facilitate diastolic filling and cardiac performance.

11.
Nat Commun ; 8(1): 350, 2017 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-28839146

RESUMEN

Mammalian biology adapts to physical activity but the molecular mechanisms sensing the activity remain enigmatic. Recent studies have revealed how Piezo1 protein senses mechanical force to enable vascular development. Here, we address Piezo1 in adult endothelium, the major control site in physical activity. Mice without endothelial Piezo1 lack obvious phenotype but close inspection reveals a specific effect on endothelium-dependent relaxation in mesenteric resistance artery. Strikingly, the Piezo1 is required for elevated blood pressure during whole body physical activity but not blood pressure during inactivity. Piezo1 is responsible for flow-sensitive non-inactivating non-selective cationic channels which depolarize the membrane potential. As fluid flow increases, depolarization increases to activate voltage-gated Ca2+ channels in the adjacent vascular smooth muscle cells, causing vasoconstriction. Physical performance is compromised in mice which lack endothelial Piezo1 and there is weight loss after sustained activity. The data suggest that Piezo1 channels sense physical activity to advantageously reset vascular control.The mechanisms that regulate the body's response to exercise are poorly understood. Here, Rode et al. show that the mechanically activated cation channel Piezo1 is a molecular sensor of physical exercise in the endothelium that triggers endothelial communication to mesenteric vessel muscle cells, leading to vasoconstriction.


Asunto(s)
Canales Iónicos/fisiología , Condicionamiento Físico Animal/fisiología , Animales , Presión Sanguínea , Señalización del Calcio , Células Cultivadas , Células Endoteliales/metabolismo , Células HEK293 , Homeostasis/genética , Humanos , Canales Iónicos/genética , Canales Iónicos/metabolismo , Masculino , Ratones , Miocitos del Músculo Liso/metabolismo , Técnicas de Placa-Clamp , Vasoconstricción/fisiología
12.
PLoS One ; 8(3): e58673, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23536811

RESUMEN

TRPV1 represents a non-selective cation channel activated by capsaicin, acidosis and high temperature. In the central nervous system where TRPV1 is highly expressed, its physiological role in nociception is clearly identified. In skeletal muscle, TRPV1 appears implicated in energy metabolism and exercise endurance. However, how as a Ca(2+) channel, it contributes to intracellular calcium concentration ([Ca(2+)]i) maintenance and muscle contraction remains unknown. Here, as in rats, we report that TRPV1 is functionally expressed in mouse skeletal muscle. In contrast to earlier reports, our analysis show TRPV1 presence only at the sarcoplasmic reticulum (SR) membrane (preferably at the longitudinal part) in the proximity of SERCA1 pumps. Using intracellular Ca(2+) imaging, we directly accessed to the channel functionality in intact FDB mouse fibers. Capsaicin and resiniferatoxin, both agonists as well as high temperature (45°C) elicited an increase in [Ca(2+)]i. TRPV1-inhibition by capsazepine resulted in a strong inhibition of TRPV1-mediated functional responses and abolished channel activation. Blocking the SR release (with ryanodine or dantrolene) led to a reduced capsaicin-induced Ca(2+) elevation suggesting that TRPV1 may participate to a secondary SR Ca(2+) liberation of greater amplitude. In conclusion, our experiments point out that TRPV1 is a functional SR Ca(2+) leak channel and may crosstalk with RyR1 in adult mouse muscle fibers.


Asunto(s)
Músculo Esquelético/metabolismo , Retículo Sarcoplasmático/metabolismo , Canales Catiónicos TRPV/metabolismo , Animales , Calcio/metabolismo , Capsaicina/análogos & derivados , Capsaicina/farmacología , Masculino , Ratones , Músculo Esquelético/efectos de los fármacos , Transporte de Proteínas , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Retículo Sarcoplasmático/efectos de los fármacos , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA