Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo de estudio
País/Región como asunto
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Environ Manage ; 71(4): 730-740, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36378320

RESUMEN

Hurricane Harvey caused unprecedented floods across large regions of Southeast Texas resulting in several infrastructural issues. One of the notable failures was of a drinking water source pump in Beaumont, Texas, that necessitated the emergency use of a temporary pump intake station in the Neches River system. This study examines the environmental consequences of Harvey-induced flooding in the Neches River system by focusing on sensitive locations, including a Superfund site (International Creosoting, IC) and adjacent to the temporary pump intake. Post-Harvey water samples showed greater than two orders of magnitude increase in polycyclic aromatic hydrocarbons (PAH) about 3 weeks after Harvey (350-420 µg L-1 on September 22) at locations adjacent to IC and the temporary water pump intake, which by that time was no longer in use. The organic carbon normalized PAH measurements in the heavily contaminated water samples from both locations (~3% w/w) agreed well with surficial soil/sediment samples collected at the east bank adjacent to the IC site (0.7-5.2% w/w). Furthermore, molecular diagnostic ratios of select PAHs supported the contribution of PAHs from the IC site into the surface waters. PAH measurements were consistent with sediment resuspension by floodwaters that were initially diluted by large flows but became more significant as the flood subsided. Overall, our data showed that flooding can cause high levels of contamination weeks after the initial flooding event, with potential for cascading risks through mobilization of pollutants from source areas and impacts to critical water infrastructure systems.


Asunto(s)
Tormentas Ciclónicas , Contaminantes Ambientales , Hidrocarburos Policíclicos Aromáticos , Contaminantes Químicos del Agua , Texas , Ríos , Contaminantes Ambientales/análisis , Agua , Hidrocarburos Policíclicos Aromáticos/análisis , Monitoreo del Ambiente , Sedimentos Geológicos/química , Contaminantes Químicos del Agua/análisis
2.
J Air Waste Manag Assoc ; 64(11): 1328-40, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25509554

RESUMEN

A computational fluid dynamics (CFD) methodology for simulating the combustion process has been validated with experimental results. Three different types of experimental setups were used to validate the CFD model. These setups include an industrial-scale flare setups and two lab-scale flames. The CFD study also involved three different fuels: C3H6/CH/Air/N2, C2H4/O2/Ar and CH4/Air. In the first setup, flare efficiency data from the Texas Commission on Environmental Quality (TCEQ) 2010 field tests were used to validate the CFD model. In the second setup, a McKenna burner with flat flames was simulated. Temperature and mass fractions of important species were compared with the experimental data. Finally, results of an experimental study done at Sandia National Laboratories to generate a lifted jet flame were used for the purpose of validation. The reduced 50 species mechanism, LU 1.1, the realizable k-epsilon turbulence model, and the EDC turbulence-chemistry interaction model were usedfor this work. Flare efficiency, axial profiles of temperature, and mass fractions of various intermediate species obtained in the simulation were compared with experimental data and a good agreement between the profiles was clearly observed. In particular the simulation match with the TCEQ 2010 flare tests has been significantly improved (within 5% of the data) compared to the results reported by Singh et al. in 2012. Validation of the speciated flat flame data supports the view that flares can be a primary source offormaldehyde emission.


Asunto(s)
Simulación por Computador , Incendios , Modelos Teóricos , Aire , Gases , Hidrodinámica , Industrias , Temperatura
3.
J Air Waste Manag Assoc ; 67(5): 599-612, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-27996695

RESUMEN

Emissions from flares constitute unburned hydrocarbons, carbon monoxide (CO), soot, and other partially burned and altered hydrocarbons along with carbon dioxide (CO2) and water. Soot or visible smoke is of particular concern for flare operators/regulatory agencies. The goal of the study is to develop a computational fluid dynamics (CFD) model capable of predicting flare combustion efficiency (CE) and soot emission. Since detailed combustion mechanisms are too complicated for (CFD) application, a 50-species reduced mechanism, LU 3.0.1, was developed. LU 3.0.1 is capable of handling C4 hydrocarbons and soot precursor species (C2H2, C2H4, C6H6). The new reduced mechanism LU 3.0.1 was first validated against experimental performance indicators: laminar flame speed, adiabatic flame temperature, and ignition delay. Further, CFD simulations using LU 3.0.1 were run to predict soot emission and CE of air-assisted flare tests conducted in 2010 in Tulsa, Oklahoma, using ANSYS Fluent software. Results of non-premixed probability density function (PDF) model and eddy dissipation concept (EDC) model are discussed. It is also noteworthy that when used in conjunction with the EDC turbulence-chemistry model, LU 3.0.1 can reasonably predict volatile organic compound (VOC) emissions as well. IMPLICATIONS: A reduced combustion mechanism containing 50 C1-C4 species and soot precursors has been developed and validated against experimental data. The combustion mechanism is then employed in the computational fluid dynamics (CFD) of modeling of soot emission and combustion efficiency (CE) of controlled flares for which experimental soot and CE data are available. The validated CFD modeling tools are useful for oil, gas, and chemical industries to comply with U.S. Environmental Protection Agency's (EPA) mandate to achieve smokeless flaring with a high CE.


Asunto(s)
Contaminantes Atmosféricos/análisis , Contaminación del Aire/análisis , Monitoreo del Ambiente/métodos , Hidrocarburos/análisis , Hidrodinámica , Modelos Químicos , Hollín/análisis , Incendios , Temperatura , Compuestos Orgánicos Volátiles/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA