Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Phys Chem A ; 124(51): 10879-10889, 2020 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-33319553

RESUMEN

Accommodation of vapor-phase water molecules into ice crystal surfaces is a fundamental process controlling atmospheric ice crystal growth. Experimental studies investigating the accommodation process with various techniques report widely spread values of the water accommodation coefficient on ice, αice, and the results on its potential temperature dependence are inconclusive. We run molecular dynamics simulations of molecules condensing onto the basal plane of ice Ih using the TIP4P/Ice empirical force field and characterize the accommodated state from this molecular perspective, utilizing the interaction energy, the tetrahedrality order parameter, and the distance below the instantaneous interface as criteria. Changes of the order parameter turn out to be a suitable measure to distinguish between the surface and bulk states of a molecule condensing onto the disordered interface. In light of the findings from the molecular dynamics, we discuss and re-analyze a recent experimental data set on αice obtained with an environmental molecular beam (EMB) setup [Kong, X.; J. Phys. Chem. A 2014, 118 (22), 3973-3979] using kinetic molecular flux modeling, aiming at a more comprehensive picture of the accommodation process from a molecular perspective. These results indicate that the experimental observations indeed cannot be explained by evaporation alone. At the same time, our results raise the issue of rapidly growing relaxation times upon decreasing temperature, challenging future experimental efforts to cover relevant time scales. Finally, we discuss the relevance of the water accommodation coefficient on ice in the context of atmospheric cloud particle growth processes.

2.
Environ Sci Technol ; 50(14): 7434-42, 2016 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-27326704

RESUMEN

Atmospheric particulate matter is one of the main factors governing the Earth's radiative budget, but its exact effects on the global climate are still uncertain. Knowledge on the molecular-scale surface phenomena as well as interactions between atmospheric organic and inorganic compounds is necessary for understanding the role of airborne nanoparticles in the Earth system. In this work, surface composition of aqueous model systems containing succinic acid and sodium chloride or ammonium sulfate is determined using a novel approach combining X-ray photoelectron spectroscopy, surface tension measurements and thermodynamic modeling. It is shown that succinic acid molecules are accumulated in the surface, yielding a 10-fold surface concentration as compared with the bulk for saturated succinic acid solutions. Inorganic salts further enhance this enrichment due to competition for hydration in the bulk. The surface compositions for various mixtures are parametrized to yield generalizable results and used to explain changes in surface tension. The enhanced surface partitioning implies an increased maximum solubility of organic compounds in atmospheric nanoparticles. The results can explain observations of size-dependent phase-state of atmospheric nanoparticles, suggesting that these particles can display drastically different behavior than predicted by bulk properties only.


Asunto(s)
Material Particulado/química , Soluciones , Aerosoles/química , Sulfato de Amonio/química , Nanopartículas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA