Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Mol Pharm ; 17(7): 2585-2598, 2020 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-32401529

RESUMEN

Despite the wide utilization of amorphous solid dispersions (ASDs) for formulating poorly water-soluble drugs, fundamental understanding of the structural basis behind their stability and dissolution behavior is limited. This is largely due to the lack of high-resolution structural tools for investigating multicomponent and amorphous systems in the solid state. In this study, we present what is likely the first publication quantifying the molecular interaction between the drug and polymer in ASDs at an angstrom level by utilizing 19F magic angle spinning (MAS) nuclear magnetic resonance (NMR) techniques. A variant of the 19F-13C rotational-echo and double-resonance (REDOR) technique was developed to quantify interatomic distances by implementing a supercycled symmetry-based recoupling schedule and synchronized simultaneous detection. We successfully deployed the technique to identify "head-to-head" and "head-to-tail" packing of crystalline posaconazole (POSA). To probe molecular interactions between POSA and hypromellose acetate succinate (HPMCAS) in the dispersion, as a major goal of this study, two-dimensional (2D) 1H-19F correlation experiments were performed. The approach facilitated observation of intermolecular hydrogen-to-fluorine contacts between the hydroxyl group of the polymer and the difluorophenyl group of the drug substance. Atomic distance measurement, utilizing the developed 19F-13C REDOR technique, revealed the close proximity of 13COH-19F at 4.3 Å. Numerical modeling analysis suggested a possible hydrogen bonding interaction between the polymer O-H group as an acceptor and POSA fluorine (O-H···F) or difluorophenyl ring (O-H···Ph) as a donor. These 19F MAS NMR techniques, including 2D 19F-1H heteronuclear correlation and 19F-13C atomic distance measurement, may shed light on the nature (i.e., type and strength) of drug-polymer interactions in ASDs and offer a new high-resolution analytical protocol for probing the microstructure of amorphous pharmaceutical materials.


Asunto(s)
Espectroscopía de Resonancia Magnética/métodos , Metilcelulosa/análogos & derivados , Polímeros/química , Triazoles/química , Enlace de Hidrógeno , Metilcelulosa/química , Modelos Moleculares , Estructura Molecular
2.
Mol Pharm ; 17(8): 2789-2808, 2020 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-32520562

RESUMEN

Oral delivery of poorly water-soluble, weakly basic drugs may be problematic based on the drugs' intrinsic properties. Many drugs in this subset have overcome barriers to delivery following successful formulation as amorphous solid dispersions (ASDs). To process drugs as ASDs, multiple commercially relevant technologies have been developed and become well understood. However, ASD-producing technologies like spray drying and KinetiSol produce ASDs with vastly differing particle characteristics. Ultimately, the objective of this study was to assess whether processing an ASD of identical composition utilizing two different ASD-producing technologies (KinetiSol and spray drying) may impact the oral bioavailability of a weakly basic drug. For this study, we selected a weakly basic drug (Boehringer Ingelheim research compound 639667, BI 667) and processed it with an anionic polymer (hypromellose acetate succinate MMP grade (HPMCAS-MMP)) to evaluate whether the processing technology could modulate drug release in acidic and neutral media. Multiple characterization techniques (specific surface area (SSA), particle size distribution (PSD), scanning electron microscopy (SEM)) were utilized to evaluate the surface characteristics and differences in particles produced by KinetiSol and spray drying. Molecular interactions and drug-polymer miscibility of the processed particles were assessed using Fourier transform infrared spectroscopy and solid-state nuclear magnetic resonance, respectively. In vitro nonsink, pH-shift dissolution in biorelevant media and dissolution/permeation studies were conducted to better understand the release of BI 667 based on processing technology and particle size distribution. Finally, an in vivo male Beagle dog study was conducted to assess the impact of processing technology on oral bioavailability. In this study, we demonstrate that particles produced by KinetiSol have enhanced oral bioavailability compared with spray-dried particles when delivering a weakly basic drug processed with an anionic polymer. The findings of this study demonstrate that by utilizing KinetiSol, drug release may be controlled such that supersaturation in acidic media is inhibited and supersaturation of the drug is designed to occur in neutral media, ultimately enhancing oral bioavailability.


Asunto(s)
Preparaciones Farmacéuticas/química , Polímeros/química , Animales , Química Farmacéutica/métodos , Perros , Portadores de Fármacos/química , Composición de Medicamentos/métodos , Liberación de Fármacos/efectos de los fármacos , Masculino , Solubilidad/efectos de los fármacos , Agua/química
3.
Mol Pharm ; 16(6): 2579-2589, 2019 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-31021639

RESUMEN

Molecular interactions between the active pharmaceutical ingredient and polymer have potentially substantial impacts on the physical stability of amorphous solid dispersions (ASDs), presumably by manipulating molecular mobility and miscibility. However, structural details for understanding the nature of the molecular contacts and mechanistic roles in various physicochemical and thermodynamic events often remain unclear. This study provides a spectroscopic characterization of posaconazole (POSA) formulations, a second-generation triazole antifungal drug (Noxafil, Merck & Co., Inc., Kenilworth, NJ, USA), at molecular resolution. One- and two-dimensional (2D) solid-state NMR (ssNMR) techniques including spectral editing, heteronuclear 1H-13C, 19F-13C, 15N-13C, and 19F-1H polarization transfer, and spin correlation and ultrafast magic angle spinning, together with the isotopic labeling strategy, were utilized to uncover molecular details in POSA ASDs in a site-specific manner. Active groups in triazole and difluorophenyl rings exhibited rich but distinct categories of interactions with two polymers, hypromellose acetate succinate and hypromellose phthalate, including intermolecular O-H···O═C and O-H···F-C hydrogen bonding, π-π aromatic packing, and electrostatic interaction. Interestingly, the chlorine-to-fluorine substituent in POSA, one of the major structural differences from itraconazole that could facilitate binding to the biological target, offers an additional contact with the polymer. These findings exhibit 2D ssNMR as a sensitive technique for probing sub-nanometer structures of pharmaceutical materials and provide a structural basis for optimizing the type and strength of drug-polymer interactions in the design of amorphous formulations.


Asunto(s)
Carbono/química , Coloides/química , Triazoles/química , Enlace de Hidrógeno , Espectroscopía de Resonancia Magnética
4.
Pharmaceutics ; 15(2)2023 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-36839916

RESUMEN

Compressed mini-tablets in sachets or capsules are an increasingly prevalent oral solid dosage form for pediatric products. While resembling adult tablets, additional care is required to control weight and potency (blend uniformity) variation due to their small size (≤2.5 mm average diameter). Additionally, sachet fill count errors complicate dose accuracy as they are difficult to resolve with weight-checking equipment. This study quantified the probability of failing content uniformity (CU) specifications (which results in the inability to release a batch) defined in USP <905> using a Monte Carlo computational model. Failure risk was modeled as a function of sachet fill count, mini-tablet weight, potency distribution, and fill error frequency. The model allows product developers to (1) determine appropriate fill counts based on anticipated product weight and potency relative standard deviation (RSD), (2) set fill error probability tolerances for sachet filling processes, (3) identify CU improvement opportunities, and (4) quantify the probability of CU failure informing risk management activities and risk disclosure for regulatory agencies. A representative product with weight and potency RSD no greater than 5%, fill count of 1-4 mini-tablets per sachet, and fill error probability per mini-tablet filled of 0.1% may experience CU batch failure probabilities as high as 8.23%, but only 0.283% if the fill count is increased to 5-10 mini-tablets per sachet. Generally, fill counts of less than five mini-tablets per sachet should be avoided where possible.

5.
J Pharm Sci ; 109(6): 1967-1977, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32087181

RESUMEN

Acyclovir is a poorly permeable, short half-life drug with poor colonic absorption, and current conventional controlled release formulations are unable to decrease the frequency of administration. We designed acyclovir dosage forms to be administered less frequently by being retained in the stomach and releasing drug over an extended duration. We developed a conventional modified-release matrix tablet to sustain the release of acyclovir and surrounded it with a hydrophilic poly(urethane) layer. When hydrated, the porous poly(urethane) swells to a size near or beyond that of the relaxed pylorus diameter and does not affect drug release rate. We demonstrated that the formulation is retained in the stomach for extended durations as it slowly releases drug, allowing for similar area under the curve but delayed tmax relative to a nongastroretentive control tablet. Unlike many other gastroretentive formulations, this dosage form design decouples drug release rate from gastric retention time, allowing them to be modulated independently. It also effectively retains in the stomach regardless of the prandial state, differentiating from other approaches. Our direct observation of excised rat stomachs allowed for a rigorous assessment of the impact of polymer swelling extent and the prandial state on both the dosage form integrity and retention time.


Asunto(s)
Sistemas de Liberación de Medicamentos , Uretano , Administración Oral , Disponibilidad Biológica , Preparaciones de Acción Retardada , Liberación de Fármacos , Comprimidos
6.
Int J Pharm ; 557: 390-401, 2019 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-30529658

RESUMEN

Hydrophobic and hydrophilic thermoplastic poly(urethane) (TPU) mixtures offer the opportunity to tune water swelling capacity and diffusion rate for drugs exhibiting broadly different properties. We sought to (1) assess the range of drug diffusion rates achieved by varying hydrophilic-to-hydrophobic TPU ratio relative to varying ethylene vinyl acetate (EVA) crystallinity; (2) investigate the effect of mixture ratio on permeability of emtricitabine; and (3) investigate the impact of the extrusion process on mixing of the two TPUs and the resulting impact on drug diffusion. The permeability of water-soluble emtricitabine exhibited a 736-fold range across the blends of TPU, but only a 3.4-fold range across the EVA grades investigated. Varying hydrophilic content of the TPU mixture from 0% to 25% (w/w) led to a negligible permeability change, while changing hydrophilic content from 55% to 100% resulted in a linear 3-fold increase in drug permeability. Interestingly, an 123-fold permeability change occurred between 50% and 55% hydrophilic polymer. Extrusion process parameters exhibited minimal impact on homogeneity and drug diffusion. These findings suggest that hydrophilic polymer domains form a continuous network at levels above 55% hydrophilic TPU, thus facilitating a water-filled porous network when exposed to water that provides a mechanism for accelerated drug diffusion.


Asunto(s)
Fármacos Anti-VIH/química , Implantes de Medicamentos , Emtricitabina/química , Poliuretanos/química , Polivinilos/química , Inhibidores de la Transcriptasa Inversa/química , Preparaciones de Acción Retardada/química , Liberación de Fármacos , Interacciones Hidrofóbicas e Hidrofílicas
7.
Int J Pharm ; 561: 324-334, 2019 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-30858115

RESUMEN

Hot melt extrusion (HME) has been used to prepare solid dispersions, especially molecularly dispersed amorphous solid dispersions (ASDs) for solubility enhancement purposes. The energy generated by the extruder in the form of mechanical and thermal output enables the dispersion and dissolution of crystalline drugs in polymeric carriers. However, the impact of this thermal and mechanical energy on ASD systems remains unclear. We selected a model ASD system containing nifedipine (NIF) and polyvinylpyrrolidone vinyl acetate (PVP/VA 64) to investigate how different types of energy input affect the preparation and physical stability of ASDs. Formulations were prepared using a Leistritz Nano-16 extruder, and we varied the screw design, barrel temperature, screw speed, and feed rate to control the mechanical and thermal energy input. Specific mechanical energy (SME) was calculated to quantitate the mechanical energy input, and the thermal energy was estimated using barrel temperature. We find that both mechanical and thermal energy inputs affect the conversion of crystalline NIF into an amorphous form, and they also affect the level of mixing and the degree of homogeneity in NIF ASDs. However, for small size extruders (e.g., Leistritz Nano-16), thermal energy is more efficient than mechanical energy in preparing NIF ASDs that have better stability.


Asunto(s)
Portadores de Fármacos/química , Composición de Medicamentos/métodos , Estabilidad de Medicamentos , Calor , Fenómenos Mecánicos , Nifedipino/química , Povidona/química , Compuestos de Vinilo/química , Solubilidad
8.
Int J Pharm ; 568: 118550, 2019 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-31336152

RESUMEN

Implants offer the opportunity to improve patient adherence and real-world outcomes. However, most polymers used today are hydrophobic and limit drug properties suitable for development. Thermoplastic poly(urethanes) (TPUs) form pores upon hydration and may facilitate the development of implants containing drugs exhibiting broadly different properties. We sought to investigate the effect of drug physicochemical properties on permeability through membranes of varying TPU mixture composition; leverage imaging to visualize microstructural changes to the membrane across the TPU mixture composition range; and quantitatively characterize the membrane microstructure using equivalent pore analysis. We observed a correlation between drug hydrophobicity and its permeability through hydrophobic-rich TPU membranes. Conversely, all compounds diffused through hydrophilic-rich TPU membranes at similar rates, regardless of drug properties. Imaging revealed significant microstructure differences between hydrophobic-rich and hydrophilic-rich TPU membranes, supporting hypotheses proposed in our previous study. The hydrated hydrophilic TPU membrane pore area was determined to be 0.583% and its equivalent pore radius was found to be 128 nm, suggesting that hydrophilic TPU membranes may be used to modify the release of small molecular weight drugs and macromolecules. These findings highlight the benefits of hydrophilic TPUs as rate-controlling membranes to modulate the release rate of drugs with varying physicochemical properties.


Asunto(s)
Membranas Artificiales , Poliuretanos/química , Dextranos/química , Difusión , Implantes de Medicamentos , Emtricitabina/química , Fluoresceína-5-Isotiocianato/análogos & derivados , Fluoresceína-5-Isotiocianato/química , Interacciones Hidrofóbicas e Hidrofílicas , Ibuprofeno/química , Metoprolol/química , Peso Molecular , Permeabilidad , Porosidad
9.
Pharmaceutics ; 10(2)2018 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-29747409

RESUMEN

Since their introduction over 50 years ago, polyurethanes have been applied to nearly every industry. This review describes applications of polyurethanes to the development of modified release drug delivery. Although drug delivery research leveraging polyurethanes has been ongoing for decades, there has been renewed and substantial interest in the field in recent years. The chemistry of polyurethanes and the mechanisms of drug release from sustained release dosage forms are briefly reviewed. Studies to assess the impact of intrinsic drug properties on release from polyurethane-based formulations are considered. The impact of hydrophilic water swelling polyurethanes on drug diffusivity and release rate is discussed. The role of pore formers in modulating drug release rate is examined. Finally, the value of assessing mechanical properties of the dosage form and approaches taken in the literature are described.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA