Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Bioorg Med Chem ; 50: 116455, 2021 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-34757295

RESUMEN

Natural products have routinely been used both as sources of and inspiration for new crop protection active ingredients. The natural product UK-2A has potent anti-fungal activity but lacks key attributes for field translation. Post-fermentation conversion of UK-2A to fenpicoxamid resulted in an active ingredient with a new target site of action for cereal and banana pathogens. Here we demonstrate the creation of a synthetic variant of fenpicoxamid via identification of the structural elements of UK-2A that are needed for anti-fungal activity. Florylpicoxamid is a non-macrocyclic active ingredient bearing two fewer stereocenters than fenpicoxamid, controls a broad spectrum of fungal diseases at low use rates and has a concise, scalable route which is aligned with green chemistry principles. The development of florylpicoxamid represents the first example of using a stepwise deconstruction of a macrocyclic natural product to design a fully synthetic crop protection active ingredient.


Asunto(s)
Antifúngicos/farmacología , Productos Biológicos/farmacología , Descubrimiento de Drogas , Compuestos Macrocíclicos/farmacología , Piridinas/farmacología , Antifúngicos/síntesis química , Antifúngicos/química , Ascomicetos/efectos de los fármacos , Productos Biológicos/síntesis química , Productos Biológicos/química , Relación Dosis-Respuesta a Droga , Compuestos Macrocíclicos/síntesis química , Compuestos Macrocíclicos/química , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Piridinas/síntesis química , Piridinas/química , Relación Estructura-Actividad
2.
PLoS Pathog ; 13(9): e1006575, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28934369

RESUMEN

The ability of HIV to establish a long-lived latent infection within resting CD4+ T cells leads to persistence and episodic resupply of the virus in patients treated with antiretroviral therapy (ART), thereby preventing eradication of the disease. Protein kinase C (PKC) modulators such as bryostatin 1 can activate these latently infected cells, potentially leading to their elimination by virus-mediated cytopathic effects, the host's immune response and/or therapeutic strategies targeting cells actively expressing virus. While research in this area has focused heavily on naturally-occurring PKC modulators, their study has been hampered by their limited and variable availability, and equally significantly by sub-optimal activity and in vivo tolerability. Here we show that a designed, synthetically-accessible analog of bryostatin 1 is better-tolerated in vivo when compared with the naturally-occurring product and potently induces HIV expression from latency in humanized BLT mice, a proven and important model for studying HIV persistence and pathogenesis in vivo. Importantly, this induction of virus expression causes some of the newly HIV-expressing cells to die. Thus, designed, synthetically-accessible, tunable, and efficacious bryostatin analogs can mediate both a "kick" and "kill" response in latently-infected cells and exhibit improved tolerability, therefore showing unique promise as clinical adjuvants for HIV eradication.


Asunto(s)
Fármacos Anti-VIH/farmacología , Brioestatinas/farmacología , Linfocitos T CD4-Positivos/virología , VIH-1/efectos de los fármacos , Latencia del Virus/efectos de los fármacos , Brioestatinas/química , Infecciones por VIH/tratamiento farmacológico , Infecciones por VIH/inmunología , VIH-1/aislamiento & purificación , Humanos , Activación Viral/efectos de los fármacos
3.
J Nat Prod ; 79(4): 675-9, 2016 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-26900625

RESUMEN

Chikungunya virus (CHIKV) is a mosquito-borne alphavirus showing a recent resurgence and rapid spread worldwide. While vaccines are under development, there are currently no therapies to treat this disease, except for over-the-counter (OTC) analgesics, which alleviate the devastating arthritic and arthralgic symptoms. To identify novel inhibitors of the virus, analogues of the natural product bryostatin 1, a clinical lead for the treatment of cancer, Alzheimer's disease, and HIV eradication, were investigated for in vitro antiviral activity and were found to be among the most potent inhibitors of CHIKV replication reported to date. Bryostatin-based therapeutic efforts and even recent anti-CHIKV strategies have centered on modulation of protein kinase C (PKC). Intriguingly, while the C ring of bryostatin primarily drives interactions with PKC, A- and B-ring functionality in these analogues has a significant effect on the observed cell-protective activity. Significantly, bryostatin 1 itself, a potent pan-PKC modulator, is inactive in these assays. These new findings indicate that the observed anti-CHIKV activity is not solely mediated by PKC modulation, suggesting possible as yet unidentified targets for CHIKV therapeutic intervention. The high potency and low toxicity of these bryologs make them promising new leads for the development of a CHIKV treatment.


Asunto(s)
Analgésicos/química , Analgésicos/uso terapéutico , Antivirales/química , Antivirales/farmacología , Brioestatinas/química , Brioestatinas/farmacología , Fiebre Chikungunya/tratamiento farmacológico , Virus Chikungunya/fisiología , Medicamentos sin Prescripción/uso terapéutico , Animales , Muerte Celular/efectos de los fármacos , Línea Celular/efectos de los fármacos , Chlorocebus aethiops , Proteínas Quinasas Dependientes de AMP Cíclico/efectos de los fármacos , Humanos , Estructura Molecular , Medicamentos sin Prescripción/química , Relación Estructura-Actividad , Replicación Viral/efectos de los fármacos
4.
J Am Chem Soc ; 137(10): 3678-85, 2015 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-25710634

RESUMEN

Protein kinase C (PKC) modulators are currently of great importance in preclinical and clinical studies directed at cancer, immunotherapy, HIV eradication, and Alzheimer's disease. However, the bound conformation of PKC modulators in a membrane environment is not known. Rotational echo double resonance (REDOR) NMR spectroscopy could uniquely address this challenge. However, REDOR NMR requires strategically labeled, high affinity ligands to determine interlabel distances from which the conformation of the bound ligand in the PKC-ligand complex could be identified. Here we report the first computer-guided design and syntheses of three bryostatin analogues strategically labeled for REDOR NMR analysis. Extensive computer analyses of energetically accessible analogue conformations suggested preferred labeling sites for the identification of the PKC-bound conformers. Significantly, three labeled analogues were synthesized, and, as required for REDOR analysis, all proved highly potent with PKC affinities (∼1 nM) on par with bryostatin. These potent and strategically labeled bryostatin analogues are new structural leads and provide the necessary starting point for projected efforts to determine the PKC-bound conformation of such analogues in a membrane environment, as needed to design new PKC modulators and understand PKC-ligand-membrane structure and dynamics.


Asunto(s)
Brioestatinas/síntesis química , Brioestatinas/metabolismo , Diseño de Fármacos , Proteína Quinasa C/metabolismo , Rotación , Brioestatinas/química , Brioestatinas/farmacología , Técnicas de Química Sintética , Ligandos , Espectroscopía de Resonancia Magnética , Modelos Moleculares , Proteína Quinasa C/química , Estructura Terciaria de Proteína
5.
Proc Natl Acad Sci U S A ; 108(17): 6721-6, 2011 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-21415363

RESUMEN

Modern methods for the identification of therapeutic leads include chemical or virtual screening of compound libraries. Nature's library represents a vast and diverse source of leads, often exhibiting exquisite biological activities. However, the advancement of natural product leads into the clinic is often impeded by their scarcity, complexity, and nonoptimal properties or efficacy as well as the challenges associated with their synthesis or modification. Function-oriented synthesis represents a strategy to address these issues through the design of simpler and therefore synthetically more accessible analogs that incorporate the activity-determining features of the natural product leads. This study illustrates the application of this strategy to the design and synthesis of functional analogs of the bryostatin marine natural products. It is specifically directed at exploring the activity-determining role of bryostatin A-ring functionality on PKC affinity and selectivity. The resultant functional analogs, which were prepared by a flexible, modular synthetic strategy, exhibit excellent affinity to PKC and differential isoform selectivity. These and related studies provide the basic information needed for the design of simplified and thus synthetically more accessible functional analogs that target PKC isoforms, major targets of therapeutic interest.


Asunto(s)
Diseño de Fármacos , Proteína Quinasa C/antagonistas & inhibidores , Proteína Quinasa C/metabolismo , Inhibidores de Proteínas Quinasas , Animales , Brioestatinas/síntesis química , Brioestatinas/química , Brioestatinas/farmacología , Células CHO , Cricetinae , Cricetulus , Sistemas de Liberación de Medicamentos/métodos , Humanos , Isoenzimas/antagonistas & inhibidores , Isoenzimas/genética , Isoenzimas/metabolismo , Ratones , Células 3T3 NIH , Proteína Quinasa C/genética , Inhibidores de Proteínas Quinasas/síntesis química , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/farmacología , Transporte de Proteínas/efectos de los fármacos , Transporte de Proteínas/genética
6.
Isr J Chem ; 51(3-4): 453-472, 2011 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-22661768

RESUMEN

We review in part our computational, design, synthesis, and biological studies on a remarkable class of compounds and their designed analogs that have led to preclinical candidates for the treatment of cancer, a first-in-class approach to Alzheimer's disease, and a promising strategy to eradicate HIV/AIDS. Because these leads target, in part, protein kinase C (PKC) isozymes, they have therapeutic potential even beyond this striking set of therapeutic indications. This program has given rise to new synthetic methodology and represents an increasingly important direction of synthesis focused on achieving function through synthesis-informed design (function-oriented synthesis).

7.
ACS Cent Sci ; 4(1): 89-96, 2018 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-29392180

RESUMEN

Bryostatin 1 (henceforth bryostatin) is in clinical trials for the treatment of Alzheimer's disease and for HIV/AIDS eradication. It is also a preclinical lead for cancer immunotherapy and other therapeutic indications. Yet nothing is known about the conformation of bryostatin bound to its protein kinase C (PKC) target in a membrane microenvironment. As a result, efforts to design more efficacious, better tolerated, or more synthetically accessible ligands have been limited to structures that do not include PKC or membrane effects known to influence PKC-ligand binding. This problem extends more generally to many membrane-associated proteins in the human proteome. Here, we use rotational-echo double-resonance (REDOR) solid-state NMR to determine the conformations of PKC modulators bound to the PKCδ-C1b domain in the presence of phospholipid vesicles. The conformationally limited PKC modulator phorbol diacetate (PDAc) is used as an initial test substrate. While unanticipated partitioning of PDAc between an immobilized protein-bound state and a mobile state in the phospholipid assembly was observed, a single conformation in the bound state was identified. In striking contrast, a bryostatin analogue (bryolog) was found to exist exclusively in a protein-bound state, but adopts a distribution of conformations as defined by three independent distance measurements. The detection of multiple PKCδ-C1b-bound bryolog conformers in a functionally relevant phospholipid complex reveals the inherent dynamic nature of cellular systems that is not captured with single-conformation static structures. These results indicate that binding, selectivity, and function of PKC modulators, as well as the design of new modulators, are best addressed using a dynamic multistate model, an analysis potentially applicable to other membrane-associated proteins.

8.
Virology ; 520: 83-93, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29800728

RESUMEN

HIV latency in resting CD4+ T cell represents a key barrier preventing cure of the infection with antiretroviral drugs alone. Latency reversing agents (LRAs) can activate HIV expression in latently infected cells, potentially leading to their elimination through virus-mediated cytopathic effects, host immune responses, and/or therapeutic strategies targeting cells actively expressing virus. We have recently described several structurally simplified analogs of the PKC modulator LRA bryostatin (termed bryologs) designed to improve synthetic accessibility, tolerability in vivo, and efficacy in inducing HIV latency reversal. Here we report the comparative performance of lead bryologs, including their effects in reducing cell surface expression of HIV entry receptors, inducing proinflammatory cytokines, inhibiting short-term HIV replication, and synergizing with histone deacetylase inhibitors to reverse HIV latency. These data provide unique insights into structure-function relationships between A- and B-ring bryolog modifications and activities in primary cells, and suggest that bryologs represent promising leads for preclinical advancement.


Asunto(s)
Brioestatinas/química , Brioestatinas/farmacología , Diseño de Fármacos , VIH-1/efectos de los fármacos , Latencia del Virus/efectos de los fármacos , Linfocitos T CD4-Positivos/efectos de los fármacos , Linfocitos T CD4-Positivos/virología , Células Cultivadas , Citocinas/efectos de los fármacos , Citocinas/metabolismo , Infecciones por VIH/virología , VIH-1/fisiología , Inhibidores de Histona Desacetilasas , Humanos , Leucocitos Mononucleares/efectos de los fármacos , Activación Viral/efectos de los fármacos , Replicación Viral/efectos de los fármacos
9.
Nat Chem ; 4(9): 705-10, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22914190

RESUMEN

Bryostatin is a unique lead in the development of potentially transformative therapies for cancer, Alzheimer's disease and the eradication of HIV/AIDS. However, the clinical use of bryostatin has been hampered by its limited supply, difficulties in accessing clinically relevant derivatives, and side effects. Here, we address these problems through the step-economical syntheses of seven members of a new family of designed bryostatin analogues using a highly convergent Prins-macrocyclization strategy. We also demonstrate for the first time that such analogues effectively induce latent HIV activation in vitro with potencies similar to or better than bryostatin. Significantly, these analogues are up to 1,000-fold more potent in inducing latent HIV expression than prostratin, the current clinical candidate for latent virus induction. This study provides the first demonstration that designed, synthetically accessible bryostatin analogues could serve as superior candidates for the eradication of HIV/AIDS through induction of latent viral reservoirs in conjunction with current antiretroviral therapy.


Asunto(s)
Brioestatinas/química , Brioestatinas/farmacología , Animales , Fármacos Anti-VIH/síntesis química , Fármacos Anti-VIH/química , Fármacos Anti-VIH/farmacología , Brioestatinas/síntesis química , Línea Celular , Ingeniería Química , Diseño de Fármacos , VIH/fisiología , Humanos , Ésteres del Forbol/química , Ésteres del Forbol/farmacología , Proteína Quinasa C/metabolismo , Ratas , Activación Viral/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA