Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Appl Environ Microbiol ; 85(10)2019 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-30877115

RESUMEN

Plants expend significant resources to select and maintain rhizosphere communities that benefit their growth and protect them from pathogens. A better understanding of assembly and function of rhizosphere microbial communities will provide new avenues for improving crop production. Secretion of antibiotics is one means by which bacteria interact with neighboring microbes and sometimes change community composition. In our analysis of a taxonomically diverse consortium from the soybean rhizosphere, we found that Pseudomonas koreensis selectively inhibits growth of Flavobacterium johnsoniae and other members of the Bacteroidetes grown in soybean root exudate. A genetic screen in P. koreensis identified a previously uncharacterized biosynthetic gene cluster responsible for the inhibitory activity. Metabolites were isolated based on biological activity and were characterized using tandem mass spectrometry, multidimensional nuclear magnetic resonance, and Mosher ester analysis, leading to the discovery of a new family of bacterial tetrahydropyridine alkaloids, koreenceine A to D (metabolites 1 to 4). Three of these metabolites are analogs of the plant alkaloid γ-coniceine. Comparative analysis of the koreenceine cluster with the γ-coniceine pathway revealed distinct polyketide synthase routes to the defining tetrahydropyridine scaffold, suggesting convergent evolution. Koreenceine-type pathways are widely distributed among Pseudomonas species, and koreenceine C was detected in another Pseudomonas species from a distantly related cluster. This work suggests that Pseudomonas and plants convergently evolved the ability to produce similar alkaloid metabolites that can mediate interbacterial competition in the rhizosphere.IMPORTANCE The microbiomes of plants are critical to host physiology and development. Microbes are attracted to the rhizosphere due to massive secretion of plant photosynthates from roots. Microorganisms that successfully join the rhizosphere community from bulk soil have access to more abundant and diverse molecules, producing a highly competitive and selective environment. In the rhizosphere, as in other microbiomes, little is known about the genetic basis for individual species' behaviors within the community. In this study, we characterized competition between Pseudomonas koreensis and Flavobacterium johnsoniae, two common rhizosphere inhabitants. We identified a widespread gene cluster in several Pseudomonas spp. that is necessary for the production of a novel family of tetrahydropyridine alkaloids that are structural analogs of plant alkaloids. We expand the known repertoire of antibiotics produced by Pseudomonas in the rhizosphere and demonstrate the role of the metabolites in interactions with other rhizosphere bacteria.


Asunto(s)
Alcaloides/metabolismo , Flavobacterium/crecimiento & desarrollo , Pseudomonas/fisiología , Pirrolidinas/metabolismo , Rizosfera , Interacciones Microbianas , Microbiología del Suelo
2.
mSystems ; 9(3): e0131723, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38380971

RESUMEN

Pseudomonas aeruginosa is recognized for its ability to colonize diverse habitats and cause disease in a variety of hosts, including plants, invertebrates, and mammals. Understanding how this bacterium is able to occupy wide-ranging niches is important for deciphering its ecology. We used transposon sequencing [Tn-Seq, also known as insertion sequencing (INSeq)] to identify genes in P. aeruginosa that contribute to fitness during the colonization of Drosophila melanogaster. Our results reveal a suite of critical factors, including those that contribute to polysaccharide production, DNA repair, metabolism, and respiration. Comparison of candidate genes with fitness determinants discovered in previous studies on P. aeruginosa identified several genes required for colonization and virulence determinants that are conserved across hosts and tissues. This analysis provides evidence for both the conservation of function of several genes across systems, as well as host-specific functions. These findings, which represent the first use of transposon sequencing of a gut pathogen in Drosophila, demonstrate the power of Tn-Seq in the fly model system and advance the existing knowledge of intestinal pathogenesis by D. melanogaster, revealing bacterial colonization determinants that contribute to a comprehensive portrait of P. aeruginosa lifestyles across habitats.IMPORTANCEDrosophila melanogaster is a powerful model for understanding host-pathogen interactions. Research with this system has yielded notable insights into mechanisms of host immunity and defense, many of which emerged from the analysis of bacterial mutants defective for well-characterized virulence factors. These foundational studies-and advances in high-throughput sequencing of transposon mutants-support unbiased screens of bacterial mutants in the fly. To investigate mechanisms of host-pathogen interplay and exploit the tractability of this model host, we used a high-throughput, genome-wide mutant analysis to find genes that enable the pathogen P. aeruginosa to colonize the fly. Our analysis reveals critical mediators of P. aeruginosa establishment in its host, some of which are required across fly and mouse systems. These findings demonstrate the utility of massively parallel mutant analysis and provide a platform for aligning the fly toolkit with comprehensive bacterial genomics.


Asunto(s)
Drosophila melanogaster , Infecciones por Pseudomonas , Animales , Ratones , Drosophila melanogaster/genética , Pseudomonas aeruginosa/genética , Genoma Bacteriano , Factores de Virulencia/genética , Infecciones por Pseudomonas/genética , Mamíferos/genética
3.
bioRxiv ; 2023 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-38045230

RESUMEN

Pseudomonas aeruginosa is recognized for its ability to colonize diverse habitats and cause disease in a variety of hosts, including plants, invertebrates, and mammals. Understanding how this bacterium is able to occupy wide-ranging niches is important for deciphering its ecology. We used transposon sequencing (Tn-Seq, also known as INSeq) to identify genes in P. aeruginosa that contribute to fitness during colonization of Drosophila melanogaster. Our results reveal a suite of critical factors, including those that contribute to polysaccharide production, DNA repair, metabolism, and respiration. Comparison of candidate genes with fitness determinants discovered in previous studies of P. aeruginosa identified several genes required for colonization and virulence determinants that are conserved across hosts and tissues. This analysis provides evidence for both the conservation of function of several genes across systems, as well as host-specific functions. These findings, which represent the first use of transposon sequencing of a gut pathogen in Drosophila, demonstrate the power of Tn-Seq in the fly model system and advance existing knowledge of intestinal pathogenesis by D. melanogaster, revealing bacterial colonization determinants that contribute to a comprehensive portrait of P. aeruginosa lifestyles across habitats.

4.
Nat Commun ; 12(1): 5700, 2021 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-34588437

RESUMEN

Bacterial biofilms are aggregates of surface-associated cells embedded in an extracellular polysaccharide (EPS) matrix, and are typically stationary. Studies of bacterial collective movement have largely focused on swarming motility mediated by flagella or pili, in the absence of a biofilm. Here, we describe a unique mode of collective movement by a self-propelled, surface-associated biofilm-like multicellular structure. Flavobacterium johnsoniae cells, which move by gliding motility, self-assemble into spherical microcolonies with EPS cores when observed by an under-oil open microfluidic system. Small microcolonies merge, creating larger ones. Microscopic analysis and computer simulation indicate that microcolonies move by cells at the base of the structure, attached to the surface by one pole of the cell. Biochemical and mutant analyses show that an active process drives microcolony self-assembly and motility, which depend on the bacterial gliding apparatus. We hypothesize that this mode of collective bacterial movement on solid surfaces may play potential roles in biofilm dynamics, bacterial cargo transport, or microbial adaptation. However, whether this collective motility occurs on plant roots or soil particles, the native environment for F. johnsoniae, is unknown.


Asunto(s)
Biopelículas , Flavobacterium/fisiología , Locomoción , Simulación por Computador , Microscopía Intravital , Técnicas Analíticas Microfluídicas , Raíces de Plantas/microbiología , Microbiología del Suelo , Imagen de Lapso de Tiempo
5.
mBio ; 12(1)2021 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-33593964

RESUMEN

The world faces two seemingly unrelated challenges-a shortfall in the STEM workforce and increasing antibiotic resistance among bacterial pathogens. We address these two challenges with Tiny Earth, an undergraduate research course that excites students about science and creates a pipeline for antibiotic discovery.


Asunto(s)
Antibacterianos , Descubrimiento de Drogas/educación , Ciencia/educación , Estudiantes , Bacterias/efectos de los fármacos , Descubrimiento de Drogas/métodos , Humanos
6.
J Biotechnol ; 310: 1-5, 2020 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-31954761

RESUMEN

Functional metagenomics, or the cloning and expression of DNA isolated directly from environmental samples, represents a source of novel compounds with biotechnological potential. However, attempts to identify such compounds in metagenomic libraries are generally inefficient in part due to lack of expression of heterologous DNA. In this research, the TnC_T7 transposon was developed to supply transcriptional machinery during functional analysis of metagenomic libraries. TnC_T7 contains bidirectional T7 promoters, the gene encoding the T7 RNA polymerase (T7RNAP), and a kanamycin resistance gene. The T7 RNA polymerase gene is regulated by the inducible arabinose promoter (PBAD), thereby facilitating inducible expression of genes adjacent to the randomly integrating transposon. The high processivity of T7RNAP should make this tool particularly useful for obtaining gene expression in long inserts. TnC_T7 functionality was validated by conducting in vitro transposition of pKR-C12 or fosmid pF076_GFPmut3*, carrying metagenomic DNA from soil. We identified transposon insertions that enhanced GFP expression in both vectors, including insertions in which the promoter delivered by the transposon was located as far as 8.7 kb from the GFP gene, indicating the power of the high processivity of the T7 polymerase. The results gathered in this research demonstrate the potential of TnC_T7 to enhance gene expression in functional metagenomic studies.


Asunto(s)
Elementos Transponibles de ADN , ARN Polimerasas Dirigidas por ADN/genética , Escherichia coli/genética , Expresión Génica , Plásmidos/genética , Regiones Promotoras Genéticas , Proteínas Virales/genética , ARN Polimerasas Dirigidas por ADN/biosíntesis , Escherichia coli/metabolismo , Plásmidos/metabolismo , Proteínas Virales/biosíntesis
7.
mBio ; 11(3)2020 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-32430474

RESUMEN

Antibiotics produced by bacteria play important roles in microbial interactions and competition Antibiosis can induce resistance mechanisms in target organisms, and at sublethal doses, antibiotics have been shown to globally alter gene expression patterns. Here, we show that hygromycin A from Streptomyces sp. strain 2AW. induces Chromobacterium violaceum ATCC 31532 to produce the purple antibiotic violacein. Sublethal doses of other antibiotics that similarly target the polypeptide elongation step of translation likewise induced violacein production, unlike antibiotics with different targets. C. violaceum biofilm formation and virulence against Drosophila melanogaster were also induced by translation-inhibiting antibiotics, and we identified an antibiotic-induced response (air) two-component regulatory system that is required for these responses. Genetic analyses indicated a connection between the Air system, quorum-dependent signaling, and the negative regulator VioS, leading us to propose a model for induction of violacein production. This work suggests a novel mechanism of interspecies interaction in which a bacterium produces an antibiotic in response to inhibition by another bacterium and supports the role of antibiotics as signal molecules.IMPORTANCE Secondary metabolites play important roles in microbial communities, but their natural functions are often unknown and may be more complex than appreciated. While compounds with antibiotic activity are often assumed to underlie microbial competition, they may alternatively act as signal molecules. In either scenario, microorganisms might evolve responses to sublethal concentrations of these metabolites, either to protect themselves from inhibition or to change certain behaviors in response to the local abundance of another species. Here, we report that violacein production by C. violaceum ATCC 31532 is induced in response to hygromycin A from Streptomyces sp. 2AW, and we show that this response is dependent on inhibition of translational polypeptide elongation and a previously uncharacterized two-component regulatory system. The breadth of the transcriptional response beyond violacein induction suggests a surprisingly complex metabolite-mediated microbe-microbe interaction and supports the hypothesis that antibiotics evolved as signal molecules. These novel insights will inform predictive models of soil community dynamics and the unintended effects of clinical antibiotic administration.


Asunto(s)
Antibacterianos/farmacología , Antibiosis/efectos de los fármacos , Chromobacterium/efectos de los fármacos , Cinamatos/farmacología , Higromicina B/análogos & derivados , Indoles/metabolismo , Biosíntesis de Proteínas/efectos de los fármacos , Animales , Biopelículas/efectos de los fármacos , Biopelículas/crecimiento & desarrollo , Chromobacterium/genética , Chromobacterium/patogenicidad , Drosophila melanogaster , Femenino , Regulación Bacteriana de la Expresión Génica , Higromicina B/farmacología , Percepción de Quorum/efectos de los fármacos , Streptomyces/metabolismo , Virulencia
8.
mBio ; 10(2)2019 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-30837345

RESUMEN

The quest to manipulate microbiomes has intensified, but many microbial communities have proven to be recalcitrant to sustained change. Developing model communities amenable to genetic dissection will underpin successful strategies for shaping microbiomes by advancing an understanding of community interactions. We developed a model community with representatives from three dominant rhizosphere taxa, the Firmicutes, Proteobacteria, and Bacteroidetes We chose Bacillus cereus as a model rhizosphere firmicute and characterized 20 other candidates, including "hitchhikers" that coisolated with B. cereus from the rhizosphere. Pairwise analysis produced a hierarchical interstrain-competition network. We chose two hitchhikers, Pseudomonas koreensis from the top tier of the competition network and Flavobacterium johnsoniae from the bottom of the network, to represent the Proteobacteria and Bacteroidetes, respectively. The model community has several emergent properties, induction of dendritic expansion of B. cereus colonies by either of the other members, and production of more robust biofilms by the three members together than individually. Moreover, P. koreensis produces a novel family of alkaloid antibiotics that inhibit growth of F. johnsoniae, and production is inhibited by B. cereus We designate this community THOR, because the members are the hitchhikers of the rhizosphere. The genetic, genomic, and biochemical tools available for dissection of THOR provide the means to achieve a new level of understanding of microbial community behavior.IMPORTANCE The manipulation and engineering of microbiomes could lead to improved human health, environmental sustainability, and agricultural productivity. However, microbiomes have proven difficult to alter in predictable ways, and their emergent properties are poorly understood. The history of biology has demonstrated the power of model systems to understand complex problems such as gene expression or development. Therefore, a defined and genetically tractable model community would be useful to dissect microbiome assembly, maintenance, and processes. We have developed a tractable model rhizosphere microbiome, designated THOR, containing Pseudomonas koreensis, Flavobacterium johnsoniae, and Bacillus cereus, which represent three dominant phyla in the rhizosphere, as well as in soil and the mammalian gut. The model community demonstrates emergent properties, and the members are amenable to genetic dissection. We propose that THOR will be a useful model for investigations of community-level interactions.


Asunto(s)
Firmicutes/fisiología , Interacciones Microbianas , Microbiota , Proteobacteria/fisiología , Microbiología del Suelo , Bacteroidetes , Firmicutes/crecimiento & desarrollo , Modelos Biológicos , Proteobacteria/crecimiento & desarrollo , Rizosfera
9.
G3 (Bethesda) ; 9(3): 651-661, 2019 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-30705119

RESUMEN

The reciprocal interaction between rhizosphere bacteria and their plant hosts results in a complex battery of genetic and physiological responses. In this study, we used insertion sequencing (INSeq) to reveal the genetic determinants responsible for the fitness of Pseudomonas aeruginosa PGPR2 during root colonization. We generated a random transposon mutant library of Pseudomonas aeruginosa PGPR2 comprising 39,500 unique insertions and identified genes required for growth in culture and on corn roots. A total of 108 genes were identified as contributing to the fitness of strain PGPR2 on roots. The importance in root colonization of four genes identified in the INSeq screen was verified by constructing deletion mutants in the genes and testing them for the ability to colonize corn roots singly or in competition with the wild type. All four mutants were affected in corn root colonization, displaying 5- to 100-fold reductions in populations in single inoculations, and all were outcompeted by the wild type by almost 100-fold after seven days on corn roots in mixed inoculations of the wild type and mutant. The genes identified in the screen had homology to genes involved in amino acid catabolism, stress adaptation, detoxification, signal transduction, and transport. INSeq technology proved a successful tool to identify fitness factors in Paeruginosa PGPR2 for root colonization.


Asunto(s)
Genes Bacterianos , Pseudomonas aeruginosa/genética , Simbiosis , Zea mays/microbiología , Proteínas Bacterianas/metabolismo , Secuenciación de Nucleótidos de Alto Rendimiento , Anotación de Secuencia Molecular , Mutagénesis Insercional , Raíces de Plantas/microbiología , Raíces de Plantas/fisiología , Pseudomonas aeruginosa/metabolismo , Pseudomonas aeruginosa/fisiología , Zea mays/fisiología
10.
Genome Announc ; 5(26)2017 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-28663293

RESUMEN

Pseudomonas koreensis CI12 was coisolated with Bacillus cereus from a root of a soybean plant grown in a field in Arlington, WI. Here, we report the draft genome sequence of P. koreensis CI12 obtained by Illumina sequencing.

11.
Genome Announc ; 5(4)2017 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-28126949

RESUMEN

Flavobacterium johnsoniae CI04 was coisolated with Bacillus cereus from a root of a field-grown soybean plant in Arlington, WI, and selected as a model for studying commensalism between members of the Cytophaga-Flavobacterium-Bacteroides group and B. cereus Here we report the draft genome sequence of F. johnsoniae CI04 obtained by Illumina sequencing.

12.
Genome Announc ; 4(5)2016 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-27587823

RESUMEN

Bacillus cereus UW85 was isolated from a root of a field-grown alfalfa plant from Arlington, WI, and identified for its ability to suppress damping off, a disease caused by Phytophthora megasperma f. sp. medicaginis on alfalfa. Here, we report the draft genome sequence of B. cereus UW85, obtained by a combination of Sanger and Illumina sequencing.

13.
Front Microbiol ; 7: 573, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27199910

RESUMEN

The dearth of new antibiotics in the face of widespread antimicrobial resistance makes developing innovative strategies for discovering new antibiotics critical for the future management of infectious disease. Understanding the genetics and evolution of antibiotic producers will help guide the discovery and bioengineering of novel antibiotics. We discovered an isolate in Alaskan boreal forest soil that had broad antimicrobial activity. We elucidated the corresponding antimicrobial natural products and sequenced the genome of this isolate, designated Streptomyces sp. 2AW. This strain illustrates the chemical virtuosity typical of the Streptomyces genus, producing cycloheximide as well as two other biosynthetically unrelated antibiotics, neutramycin, and hygromycin A. Combining bioinformatic and chemical analyses, we identified the gene clusters responsible for antibiotic production. Interestingly, 2AW appears dissimilar from other cycloheximide producers in that the gene encoding the polyketide synthase resides on a separate part of the chromosome from the genes responsible for tailoring cycloheximide-specific modifications. This gene arrangement and our phylogenetic analyses of the gene products suggest that 2AW holds an evolutionarily ancestral lineage of the cycloheximide pathway. Our analyses support the hypothesis that the 2AW glutaramide gene cluster is basal to the lineage wherein cycloheximide production diverged from other glutarimide antibiotics. This study illustrates the power of combining modern biochemical and genomic analyses to gain insight into the evolution of antibiotic-producing microorganisms.

14.
Gene ; 537(2): 312-21, 2014 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-24361203

RESUMEN

The oomycete Phytophthora infestans, causal agent of the tomato and potato late blight, generates important economic and environmental losses worldwide. As current control strategies are becoming less effective, there is a need for studies on oomycete metabolism to help identify promising and more effective targets for chemical control. The pyrimidine pathways are attractive metabolic targets to combat tumors, virus and parasitic diseases but have not yet been studied in Phytophthora. Pyrimidines are involved in several critical cellular processes and play structural, metabolic and regulatory functions. Here, we used genomic and transcriptomic information to survey the pyrimidine metabolism during the P. infestans life cycle. After assessing the putative gene machinery for pyrimidine salvage and de novo synthesis, we inferred genealogies for each enzymatic domain in the latter pathway, which displayed a mosaic origin. The last two enzymes of the pathway, orotate phosphoribosyltransferase and orotidine-5-monophosphate decarboxylase, are fused in a multi-domain enzyme and are duplicated in some P. infestans strains. Two splice variants of the third gene (dihydroorotase) were identified, one of them encoding a premature stop codon generating a non-functional truncated protein. Relative expression profiles of pyrimidine biosynthesis genes were evaluated by qRT-PCR during infection in Solanum phureja. The third and fifth genes involved in this pathway showed high up-regulation during biotrophic stages and down-regulation during necrotrophy, whereas the uracil phosphoribosyl transferase gene involved in pyrimidine salvage showed the inverse behavior. These findings suggest the importance of de novo pyrimidine biosynthesis during the fast replicative early infection stages and highlight the dynamics of the metabolism associated with the hemibiotrophic life style of pathogen.


Asunto(s)
Phytophthora infestans/genética , Phytophthora infestans/metabolismo , Phytophthora infestans/patogenicidad , Pirimidinas/biosíntesis , Empalme Alternativo , Clonación Molecular , Dihidroorotasa/genética , Dihidroorotasa/metabolismo , Orotato Fosforribosiltransferasa/genética , Orotato Fosforribosiltransferasa/metabolismo , Orotidina-5'-Fosfato Descarboxilasa/genética , Orotidina-5'-Fosfato Descarboxilasa/metabolismo , Filogenia , Pirimidinas/metabolismo , Solanum/microbiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA