Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Brain ; 145(7): 2332-2346, 2022 07 29.
Artículo en Inglés | MEDLINE | ID: mdl-35134125

RESUMEN

Metabolism regulates neuronal activity and modulates the occurrence of epileptic seizures. Here, using two rodent models of absence epilepsy, we show that hypoglycaemia increases the occurrence of spike-wave seizures. We then show that selectively disrupting glycolysis in the thalamus, a structure implicated in absence epilepsy, is sufficient to increase spike-wave seizures. We propose that activation of thalamic AMP-activated protein kinase, a sensor of cellular energetic stress and potentiator of metabotropic GABAB-receptor function, is a significant driver of hypoglycaemia-induced spike-wave seizures. We show that AMP-activated protein kinase augments postsynaptic GABAB-receptor-mediated currents in thalamocortical neurons and strengthens epileptiform network activity evoked in thalamic brain slices. Selective thalamic AMP-activated protein kinase activation also increases spike-wave seizures. Finally, systemic administration of metformin, an AMP-activated protein kinase agonist and common diabetes treatment, profoundly increased spike-wave seizures. These results advance the decades-old observation that glucose metabolism regulates thalamocortical circuit excitability by demonstrating that AMP-activated protein kinase and GABAB-receptor cooperativity is sufficient to provoke spike-wave seizures.


Asunto(s)
Epilepsia Tipo Ausencia , Hipoglucemia , Proteínas Quinasas Activadas por AMP/metabolismo , Epilepsia Tipo Ausencia/metabolismo , Humanos , Hipoglucemia/inducido químicamente , Hipoglucemia/metabolismo , Receptores de GABA-B/metabolismo , Convulsiones , Tálamo
2.
J Neurosci ; 38(5): 1232-1248, 2018 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-29273603

RESUMEN

Maintenance of a low intracellular Cl- concentration ([Cl-]i) is critical for enabling inhibitory neuronal responses to GABAA receptor-mediated signaling. Cl- transporters, including KCC2, and extracellular impermeant anions ([A]o) of the extracellular matrix are both proposed to be important regulators of [Cl-]i Neurons of the reticular thalamic (RT) nucleus express reduced levels of KCC2, indicating that GABAergic signaling may produce excitation in RT neurons. However, by performing perforated patch recordings and calcium imaging experiments in rats (male and female), we find that [Cl-]i remains relatively low in RT neurons. Although we identify a small contribution of [A]o to a low [Cl-]i in RT neurons, our results also demonstrate that reduced levels of KCC2 remain sufficient to maintain low levels of Cl- Reduced KCC2 levels, however, restrict the capacity of RT neurons to rapidly extrude Cl- following periods of elevated GABAergic signaling. In a computational model of a local RT network featuring slow Cl- extrusion kinetics, similar to those we found experimentally, model RT neurons are predisposed to an activity-dependent switch from GABA-mediated inhibition to excitation. By decreasing the activity threshold required to produce excitatory GABAergic signaling, weaker stimuli are able to propagate activity within the model RT nucleus. Our results indicate the importance of even diminished levels of KCC2 in maintaining inhibitory signaling within the RT nucleus and suggest how this important activity choke point may be easily overcome in disorders such as epilepsy.SIGNIFICANCE STATEMENT Precise regulation of intracellular Cl- levels ([Cl-]i) preserves appropriate, often inhibitory, GABAergic signaling within the brain. However, there is disagreement over the relative contribution of various mechanisms that maintain low [Cl-]i We found that the Cl- transporter KCC2 is an important Cl- extruder in the reticular thalamic (RT) nucleus, despite this nucleus having remarkably low KCC2 immunoreactivity relative to other regions of the adult brain. We also identified a smaller contribution of fixed, impermeant anions ([A]o) to lowering [Cl-]i in RT neurons. Inhibitory signaling among RT neurons is important for preventing excessive activation of RT neurons, which can be responsible for generating seizures. Our work suggests that KCC2 critically restricts the spread of activity within the RT nucleus.


Asunto(s)
Neuronas GABAérgicas/fisiología , Formación Reticular/fisiología , Transducción de Señal/fisiología , Tálamo/fisiología , Animales , Cloruros/metabolismo , Cloruros/farmacología , Simulación por Computador , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Técnicas de Placa-Clamp , Ratas , Ratas Sprague-Dawley , Receptores de GABA-A/genética , Receptores de GABA-A/fisiología , Simportadores/genética , Simportadores/fisiología , Cotransportadores de K Cl
3.
Elife ; 112022 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-34982032

RESUMEN

Hyperventilation reliably provokes seizures in patients diagnosed with absence epilepsy. Despite this predictable patient response, the mechanisms that enable hyperventilation to powerfully activate absence seizure-generating circuits remain entirely unknown. By utilizing gas exchange manipulations and optogenetics in the WAG/Rij rat, an established rodent model of absence epilepsy, we demonstrate that absence seizures are highly sensitive to arterial carbon dioxide, suggesting that seizure-generating circuits are sensitive to pH. Moreover, hyperventilation consistently activated neurons within the intralaminar nuclei of the thalamus, a structure implicated in seizure generation. We show that intralaminar thalamus also contains pH-sensitive neurons. Collectively, these observations suggest that hyperventilation activates pH-sensitive neurons of the intralaminar nuclei to provoke absence seizures.


Asunto(s)
Alcalosis Respiratoria/patología , Convulsiones , Animales , Dióxido de Carbono , Concentración de Iones de Hidrógeno , Hipoxia , Núcleos Talámicos Intralaminares/citología , Masculino , Neuronas/fisiología , Ratas
4.
Elife ; 92020 09 09.
Artículo en Inglés | MEDLINE | ID: mdl-32902384

RESUMEN

Absence seizures result from 3 to 5 Hz generalized thalamocortical oscillations that depend on highly regulated inhibitory neurotransmission in the thalamus. Efficient reuptake of the inhibitory neurotransmitter GABA is essential, and reuptake failure worsens human seizures. Here, we show that blocking GABA transporters (GATs) in acute rat brain slices containing key parts of the thalamocortical seizure network modulates epileptiform activity. As expected, we found that blocking either GAT1 or GAT3 prolonged oscillations. However, blocking both GATs unexpectedly suppressed oscillations. Integrating experimental observations into single-neuron and network-level computational models shows how a non-linear dependence of T-type calcium channel gating on GABAB receptor activity regulates network oscillations. Receptor activity that is either too brief or too protracted fails to sufficiently open T-type channels necessary for sustaining oscillations. Only within a narrow range does prolonging GABAB receptor activity promote channel opening and intensify oscillations. These results have implications for therapeutics that modulate inhibition kinetics.


Asunto(s)
Canales de Calcio Tipo T/metabolismo , Modelos Neurológicos , Neuronas/fisiología , Tálamo/fisiología , Animales , Células Cultivadas , Proteínas Transportadoras de GABA en la Membrana Plasmática/metabolismo , Masculino , Ratas , Ratas Sprague-Dawley , Receptores de GABA-B/metabolismo , Convulsiones/metabolismo
5.
Epilepsy Curr ; 19(4): 258-260, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31189383

RESUMEN

Network Properties Revealed During Multi-Scale Calcium Imaging of Seizure Activity in Zebrafish Liu J, Baraban SC. eNeuro. 2019;6(1):ENEURO.0041-19.2019. doi:10.1523/ENEURO.0041-19.2019. eCollection 2019 Jan-Feb. PMID: 30895220. Seizures are characterized by hypersynchronization of neuronal networks. Understanding these networks could provide a critical window for therapeutic control of recurrent seizure activity, that is, epilepsy. However, imaging seizure networks have largely been limited to microcircuits in vitro or small "windows" in vivo. Here, we combine fast confocal imaging of genetically encoded calcium indicator-expressing larval zebrafish with local field potential recordings to study epileptiform events at whole-brain and single-neuron levels in vivo. Using an acute seizure model (pentylenetetrazole, PTZ), we reliably observed recurrent electrographic ictal-like events associated with generalized activation of all major brain regions and uncovered a well-preserved anterior to posterior seizure propagation pattern. We also examined brain-wide network synchronization and spatiotemporal patterns of neuronal activity in the optic tectum microcircuit. Brain-wide and single-neuronal level analysis of PTZ-exposed and 4-aminopyridine-exposed zebrafish revealed distinct network dynamics associated with seizure and nonseizure hyperexcitable states, respectively. Neuronal ensembles, comprised of coactive neurons, were also uncovered during interictal-like periods. Taken together, these results demonstrate that macro- and micro-network calcium motifs in zebrafish may provide a greater understanding of epilepsy.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA