Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Crit Rev Biochem Mol Biol ; 53(2): 192-207, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29457544

RESUMEN

The plasma membrane is compartmentalized into several distinct regions or domains, which show a broad diversity in both size and lifetime. The segregation of lipids and membrane proteins is thought to be driven by the lipid composition itself, lipid-protein interactions and diffusional barriers. With regards to the lipid composition, the immiscibility of certain classes of lipids underlies the "lipid raft" concept of plasmalemmal compartmentalization. Historically, lipid rafts have been described as cholesterol and (glyco)sphingolipid-rich regions of the plasma membrane that exist as a liquid-ordered phase that are resistant to extraction with non-ionic detergents. Over the years the interest in lipid rafts grew as did the challenges with studying these nanodomains. The term lipid raft has fallen out of favor with many scientists and instead the terms "membrane raft" or "membrane nanodomain" are preferred as they connote the heterogeneity and dynamic nature of the lipid-protein assemblies. In this article, we will discuss the classical lipid raft hypothesis and its limitations. This review will also discuss alternative models of lipid-protein interactions, annular lipid shells, and larger membrane clusters. We will also discuss the mesoscale organization of plasmalemmal domains including visible structures such as clathrin-coated pits and caveolae.


Asunto(s)
Caveolas , Lípidos de la Membrana , Proteínas de la Membrana , Modelos Biológicos , Modelos Químicos , Animales , Caveolas/química , Caveolas/metabolismo , Humanos , Lípidos de la Membrana/química , Lípidos de la Membrana/metabolismo , Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo
2.
Traffic ; 19(8): 591-604, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29693767

RESUMEN

The plasma membrane is inhomogeneously organized containing both highly ordered and disordered nanodomains. 7-Ketocholesterol (7KC), an oxysterol formed from the nonenzymatic oxidation of cholesterol, is a potent disruptor of membrane order. Importantly, 7KC is a component of oxidized low-density lipoprotein and accumulates in macrophage and foam cells found in arterial plaques. Using a murine macrophage cell line, J774, we report that both IgG-mediated and phosphatidylserine-mediated phagocytic pathways are inhibited by the accumulation of 7KC. Examination of the well-studied Fcγ receptor pathway revealed that the cell surface receptor abundance and ligand binding are unaltered while downstream signaling and activation of spleen tyrosine kinase is not affected. However, while the recruitment of phospholipase Cγ1 was unaffected its apparent enzymatic activity was compromised resulting in sustained phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2 ] levels and polymerized actin at the base of the phagocytic cup. Additionally, we found that 7KC prevented the activation of PLCß downstream of the P2Y6 G-protein coupled receptor and that 7KC impaired PLCγ activity in response to a direct elevation of cytosolic calcium induced by ionomycin. Finally, we demonstrate that 7KC partly attenuates the activity of rapamycin recruitable constitutively active PLCß3. Together, our results demonstrate that the accumulation of 7KC impairs macrophage function by altering PtdIns(4,5)P2 catabolism and, thus, impairing actin depolymerization required for the completion of phagocytosis.


Asunto(s)
Cetocolesteroles/farmacología , Fagocitosis/efectos de los fármacos , Fosfatidilinositol 4,5-Difosfato/metabolismo , Animales , Línea Celular , Humanos , Lipoproteínas LDL/metabolismo , Macrófagos/efectos de los fármacos , Ratones , Fosfolipasa C beta/metabolismo , Fosfolipasa C gamma/metabolismo , Receptores Purinérgicos P2/metabolismo
3.
Methods Mol Biol ; 1519: 79-91, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-27815874

RESUMEN

Phagocytosis is a receptor-mediated process whereby professional phagocytes internalize invading pathogens and apoptotic bodies into an intracellular vacuole or phagosome, leading to their degradation. During the formation and maturation of the phagosome, several lipids undergo changes and effector proteins are recruited on the nascent phagosome in a concerted manner. These highly localized, dynamic, and transient processes can only be studied by methods capable of high spatial and temporal resolution. The use of genetically encoded chimeric constructs coupled with fluorescence confocal microscopy enables the continuous, noninvasive analysis of the distribution and metabolism of lipids and effector proteins during phagocytosis. Here, we describe a method where the mouse macrophage cell line, RAW 264.7, and primary macrophages are transiently transfected with fluorescent chimeric probes to analyze and quantify phagocytosis of immunoglobulin-opsonized particles, using confocal microscopy.


Asunto(s)
Microscopía Fluorescente/métodos , Fagocitosis , Animales , Técnicas de Cultivo de Célula , Separación Celular , Supervivencia Celular , Electroporación , Procesamiento de Imagen Asistido por Computador , Macrófagos/citología , Macrófagos/metabolismo , Ratones , Células RAW 264.7 , Transfección
4.
Nat Commun ; 8(1): 1393, 2017 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-29123120

RESUMEN

The plasma membrane is uniquely enriched in phosphatidylserine (PtdSer). This anionic phospholipid is restricted almost exclusively to the inner leaflet of the plasmalemma. Because of their high density, the headgroups of anionic lipids experience electrostatic repulsion that, being exerted asymmetrically, is predicted to favor membrane curvature. We demonstrate that cholesterol limits this repulsion and tendency to curve. Removal of cholesterol or insertion of excess PtdSer increases the charge density of the inner leaflet, generating foci of enhanced charge and curvature where endophilin and synaptojanin are recruited. From these sites emerge tubules that undergo fragmentation, resulting in marked endocytosis of PtdSer. Shielding or reduction of the surface charge or imposition of outward membrane tension minimized invagination and PtdSer endocytosis. We propose that cholesterol associates with PtdSer to form nanodomains where the headgroups of PtdSer are maintained sufficiently separated to limit spontaneous curvature while sheltering the hydrophobic sterol from the aqueous medium.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Membrana Celular/fisiología , Forma de la Célula/fisiología , Colesterol/metabolismo , Endocitosis/fisiología , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Monoéster Fosfórico Hidrolasas/metabolismo , Electricidad Estática , Proteínas Adaptadoras Transductoras de Señales/genética , Línea Celular Tumoral , Células HeLa , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Péptidos y Proteínas de Señalización Intracelular/genética , Fosfatidilserinas/química , Interferencia de ARN , ARN Interferente Pequeño/genética
5.
ACS Chem Biol ; 10(11): 2616-23, 2015 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-26352211

RESUMEN

Most existing antibiotics were discovered through screens of environmental microbes, particularly the streptomycetes, for the capacity to prevent the growth of pathogenic bacteria. This "activity-guided screening" method has been largely abandoned because it repeatedly rediscovers those compounds that are highly expressed during laboratory culture. Most of these metabolites have already been biochemically characterized. However, the sequencing of streptomycete genomes has revealed a large number of "cryptic" secondary metabolic genes that are either poorly expressed in the laboratory or that have biological activities that cannot be discovered through standard activity-guided screens. Methods that reveal these uncharacterized compounds, particularly methods that are not biased in favor of the highly expressed metabolites, would provide direct access to a large number of potentially useful biologically active small molecules. To address this need, we have devised a discovery method in which a chemical elicitor called Cl-ARC is used to elevate the expression of cryptic biosynthetic genes. We show that the resulting change in product yield permits the direct discovery of secondary metabolites without requiring knowledge of their biological activity. We used this approach to identify three rare secondary metabolites and find that two of them target eukaryotic cells and not bacterial cells. In parallel, we report the first paired use of cheminformatic inference and chemical genetic epistasis in yeast to identify the target. In this way, we demonstrate that oxohygrolidin, one of the eukaryote-active compounds we identified through activity-independent screening, targets the V1 ATPase in yeast and human cells and secondarily HSP90.


Asunto(s)
Acetanilidas/química , Actinobacteria/química , Actinobacteria/metabolismo , Antibacterianos/biosíntesis , Antibacterianos/aislamiento & purificación , Productos Biológicos/química , Descubrimiento de Drogas/métodos , Macrólidos/química , Éteres Fenílicos/química , Acetanilidas/farmacología , Actinobacteria/genética , Actinobacteria/crecimiento & desarrollo , Antibacterianos/química , Antibacterianos/farmacología , Bacterias/efectos de los fármacos , Productos Biológicos/metabolismo , Cromatografía Liquida , Proteínas HSP90 de Choque Térmico/antagonistas & inhibidores , Macrólidos/farmacología , Éteres Fenílicos/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA