RESUMEN
Phase transitions in 2D materials can lead to massive changes in electronic properties that enable novel electronic devices. Tantalum disulfide (TaS2), specifically the "1T" phase (1T-TaS2), exhibits a phase transition based on the formation of commensurate charge density waves (CCDW) at 180 K. In this work, we investigate the impact of substrate choice on the phase transitions in ultrathin 1T-TaS2. Doping and charge transfer from the substrate has little impact on CDW phase transitions. On the contrary, we demonstrated that substrate surface roughness is a primary extrinsic factor in CCDW transition temperature and hysteresis, where higher roughness leads to smaller transition hysteresis. Such roughness can be simulated via surface texturing of SiO2/Si substrates, which controllably and reproducibly induces periodic strain in the 1T-TaS2 and thereby enables the potential for engineering CDW phase transitions.
RESUMEN
In this work, we demonstrate abrupt, reversible switching of resistance in 1T-TaS2 using dc and pulsed sources, corresponding to an insulator-metal transition between the insulating Mott and equilibrium metallic states. This transition occurs at a constant critical resistivity of 7 mohm-cm regardless of temperature or bias conditions and the transition time is significantly smaller than abrupt transitions by avalanche breakdown in other small gap Mott insulating materials. Furthermore, this critical resistivity corresponds to a carrier density of 4.5 × 10(19) cm(-3), which compares well with the critical carrier density for the commensurate to nearly commensurate charge density wave transition. These results suggest that the transition is facilitated by a carrier driven collapse of the Mott gap in 1T-TaS2, which results in fast (3 ns) switching.
RESUMEN
The microbial populations of the oxidation ditch process at the full-scale municipal wastewater treatment plants (WWTP) in a city in north China were analyzed by fluorescent in situ hybridization (FISH). Fractions structure varieties and distribution characteristics of Accumulibacter as potential phosphorus accumulating organisms (PAOs), and Competibacter as potential glycogen accumulating organisms (GAOs) were quantified. The results indicated that Accumulibacter comprised around 2.0% +/- 0.6%, 3.4% +/- 0.6% and 3.5% +/- 1.2% of the total biomass in the anaerobic tank, anoxic zone and zone, respectively, while the corresponding values for Competibacter were 25.3% +/- 8.7%, 30.3% +/- 7.1% and 24.4% +/- 6.1%. Lower Accumulibacter fractions were found compared with previous full-scale reports (7%-22%), indicating low phosphorus removal efficiency in the oxidation ditch system. Statistical analysis indicated that the amount of PAOs was significantly higher in the anoxic zone and the aerobic zone compared with that in the anaerobic tank, while GAOs remained at the same level.