Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Nature ; 612(7939): 292-300, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36385527

RESUMEN

Teosinte, the wild ancestor of maize (Zea mays subsp. mays), has three times the seed protein content of most modern inbreds and hybrids, but the mechanisms that are responsible for this trait are unknown1,2. Here we use trio binning to create a contiguous haplotype DNA sequence of a teosinte (Zea mays subsp. parviglumis) and, through map-based cloning, identify a major high-protein quantitative trait locus, TEOSINTE HIGH PROTEIN 9 (THP9), on chromosome 9. THP9 encodes an asparagine synthetase 4 enzyme that is highly expressed in teosinte, but not in the B73 inbred, in which a deletion in the tenth intron of THP9-B73 causes incorrect splicing of THP9-B73 transcripts. Transgenic expression of THP9-teosinte in B73 significantly increased the seed protein content. Introgression of THP9-teosinte into modern maize inbreds and hybrids greatly enhanced the accumulation of free amino acids, especially asparagine, throughout the plant, and increased seed protein content without affecting yield. THP9-teosinte seems to increase nitrogen-use efficiency, which is important for promoting a high yield under low-nitrogen conditions.


Asunto(s)
Nitrógeno , Zea mays , Zea mays/genética , Familia , Semillas/genética
2.
Plant Physiol ; 194(4): 2616-2630, 2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38206190

RESUMEN

The plant cuticle is essential in plant defense against biotic and abiotic stresses. To systematically elucidate the genetic architecture of maize (Zea mays L.) cuticular wax metabolism, 2 cuticular wax-related traits, the chlorophyll extraction rate (CER) and water loss rate (WLR) of 389 maize inbred lines, were investigated and a genome-wide association study (GWAS) was performed using 1.25 million single nucleotide polymorphisms (SNPs). In total, 57 nonredundant quantitative trait loci (QTL) explaining 5.57% to 15.07% of the phenotypic variation for each QTL were identified. These QTLs contained 183 genes, among which 21 strong candidates were identified based on functional annotations and previous publications. Remarkably, 3 candidate genes that express differentially during cuticle development encode ß-ketoacyl-CoA synthase (KCS). While ZmKCS19 was known to be involved in cuticle wax metabolism, ZmKCS12 and ZmKCS3 functions were not reported. The association between ZmKCS12 and WLR was confirmed by resequencing 106 inbred lines, and the variation of WLR was significant between different haplotypes of ZmKCS12. In this study, the loss-of-function mutant of ZmKCS12 exhibited wrinkled leaf morphology, altered wax crystal morphology, and decreased C32 wax monomer levels, causing an increased WLR and sensitivity to drought. These results confirm that ZmKCS12 plays a vital role in maize C32 wax monomer synthesis and is critical for drought tolerance. In sum, through GWAS of 2 cuticular wax-associated traits, this study reveals comprehensively the genetic architecture in maize cuticular wax metabolism and provides a valuable reference for the genetic improvement of stress tolerance in maize.


Asunto(s)
Estudio de Asociación del Genoma Completo , Zea mays , Zea mays/genética , Zea mays/metabolismo , Sitios de Carácter Cuantitativo/genética , Fenotipo , Agua/metabolismo , Hojas de la Planta/genética
3.
Plant J ; 115(6): 1699-1715, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37300848

RESUMEN

Plant architecture, lodging resistance, and yield are closely associated with height. In this paper, we report the identification and characterization of two allelic EMS-induced mutants of Zea mays, xyl-1, and xyl-2 that display dwarf phenotypes. The mutated gene, ZmXYL, encodes an α-xylosidase which functions in releasing xylosyl residue from a ß-1,4-linked glucan chain. Total α-xylosidase activity in the two alleles is significantly decreased compared to wild-type plants. Loss-of-function mutants of ZmXYL resulted in a decreased xylose content, an increased XXXG content in xyloglucan (XyG), and a reduced auxin content. We show that auxin has an antagonistic effect with XXXG in promoting cell divisions within mesocotyl tissue. xyl-1 and xyl-2 were less sensitive to IAA compared to B73. Based on our study, a model is proposed that places XXXG, an oligosaccharide derived from XyG and the substrate of ZmXYL, as having a negative impact on auxin homeostasis resulting in the dwarf phenotypes of the xyl mutants. Our results provide a insight into the roles of oligosaccharides released from plant cell walls as signals in mediating plant growth and development.


Asunto(s)
Xilosidasas , Zea mays , Zea mays/genética , Ácidos Indolacéticos , Oligosacáridos/química , Plantas/genética
4.
New Phytol ; 241(5): 2075-2089, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38095260

RESUMEN

Nuclear-cytoplasmic trafficking is crucial for protein synthesis in eukaryotic cells due to the spatial separation of transcription and translation by the nuclear envelope. However, the mechanism underlying this process remains largely unknown in plants. In this study, we isolated a maize (Zea mays) mutant designated developmentally delayed kernel 1 (ddk1), which exhibits delayed seed development and slower filling. Ddk1 encodes a plant-specific protein known as Importin-4 ß, and its mutation results in reduced 80S monosomes and suppressed protein synthesis. Through our investigations, we found that DDK1 interacts with eIF1A proteins in vivo. However, in vitro experiments revealed that this interaction exhibits low affinity in the absence of RanGTP. Additionally, while the eIF1A protein primarily localizes to the cytoplasm in the wild-type, it remains significantly retained within the nuclei of ddk1 mutants. These observations suggest that DDK1 functions as an exportin and collaborates with RanGTP to facilitate the nuclear export of eIF1A, consequently regulating endosperm development at the translational level. Importantly, both DDK1 and eIF1A are conserved among various plant species, implying the preservation of this regulatory module across diverse plants.


Asunto(s)
Semillas , Zea mays , Transporte Activo de Núcleo Celular , Zea mays/metabolismo , Semillas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Carioferinas/genética , Carioferinas/metabolismo , Grano Comestible/metabolismo
5.
Plant Physiol ; 193(4): 2788-2805, 2023 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-37725401

RESUMEN

High temperature induces stomatal opening; however, uncontrolled stomatal opening is dangerous for plants in response to high temperature. We identified a high-temperature sensitive (hts) mutant from the ethyl methane sulfonate (EMS)-induced maize (Zea mays) mutant library that is linked to a single base change in MITOGEN-ACTIVATED PROTEIN KINASE 20 (ZmMPK20). Our data demonstrated that hts mutants exhibit substantially increased stomatal opening and water loss rate, as well as decreased thermotolerance, compared to wild-type plants under high temperature. ZmMPK20-knockout mutants showed similar phenotypes as hts mutants. Overexpression of ZmMPK20 decreased stomatal apertures, water loss rate, and enhanced plant thermotolerance. Additional experiments showed that ZmMPK20 interacts with MAP KINASE KINASE 9 (ZmMKK9) and E3 ubiquitin ligase RPM1 INTERACTING PROTEIN 2 (ZmRIN2), a maize homolog of Arabidopsis (Arabidopsis thaliana) RIN2. ZmMPK20 prevented ZmRIN2 degradation by inhibiting ZmRIN2 self-ubiquitination. ZmMKK9 phosphorylated ZmMPK20 and enhanced the inhibitory effect of ZmMPK20 on ZmRIN2 degradation. Moreover, we employed virus-induced gene silencing (VIGS) to silence ZmMKK9 and ZmRIN2 in maize and heterologously overexpressed ZmMKK9 or ZmRIN2 in Arabidopsis. Our findings demonstrated that ZmMKK9 and ZmRIN2 play negative regulatory roles in high-temperature-induced stomatal opening. Accordingly, we propose that the ZmMKK9-ZmMPK20-ZmRIN2 cascade negatively regulates high-temperature-induced stomatal opening and balances water loss and leaf temperature, thus enhancing plant thermotolerance.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Zea mays/genética , Zea mays/metabolismo , Proteínas Quinasas Activadas por Mitógenos/genética , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Temperatura , Estomas de Plantas/fisiología , Agua/metabolismo
6.
Plant Physiol ; 193(3): 1834-1848, 2023 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-37403650

RESUMEN

Plant metaxylem vessels provide physical support to promote upright growth and the transport of water and nutrients. A detailed characterization of the molecular network controlling metaxylem development is lacking. However, knowledge of the events that regulate metaxylem development could contribute to the development of germplasm with improved yield. In this paper, we screened an EMS-induced B73 mutant library, which covers 92% of maize (Zea mays) genes, to identify drought-sensitive phenotypes. Three mutants were identified, named iqd27-1, iqd27-2, and iqd27-3, and genetic crosses showed that they were allelic to each other. The causal gene in these 3 mutants encodes the IQ domain-containing protein ZmIQD27. Our study showed that defective metaxylem vessel development likely causes the drought sensitivity and abnormal water transport phenotypes in the iqd27 mutants. ZmIQD27 was expressed in the root meristematic zone where secondary cell wall deposition is initiated, and loss-of-function iqd27 mutants exhibited a microtubular arrangement disorder. We propose that association of functional ZmIQD27 with microtubules is essential for correct targeted deposition of the building blocks for secondary cell wall development in maize.


Asunto(s)
Meristema , Zea mays , Zea mays/metabolismo , Plantones/genética , Sequías , Agua/metabolismo
7.
Plant Physiol ; 189(2): 611-627, 2022 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-35218364

RESUMEN

Mitochondrial function relies on the assembly of electron transport chain complexes, which requires coordination between proteins encoded by the mitochondrion and those of the nucleus. Here, we cloned a maize (Zea mays) cytochrome c maturation FN stabilizer1 (CNS1) and found it encodes a pentatricopeptide repeat (PPR) protein. Members of the PPR family are widely distributed in plants and are associated with RNA metabolism in organelles. P-type PPR proteins play essential roles in stabilizing the 3'-end of RNA in mitochondria; whether a similar process exists for stabilizing the 5'-terminus of mitochondrial RNA remains unclear. The kernels of cns1 exhibited arrested embryo and endosperm development, whereas neither conventional splicing deficiency nor RNA editing difference in mitochondrial genes was observed. Instead, most of the ccmFN transcripts isolated from cns1 mutant plants were 5'-truncated and therefore lacked the start codon. Biochemical and molecular data demonstrated that CNS1 is a P-type PPR protein encoded by nuclear DNA and that it localizes to the mitochondrion. Also, one binding site of CNS1 located upstream of the start codon in the ccmFN transcript. Moreover, abnormal mitochondrial morphology and dramatic upregulation of alternative oxidase genes were observed in the mutant. Together, these results indicate that CNS1 is essential for reaching a suitable level of intact ccmFN transcripts through binding to the 5'-UTR of the RNAs and maintaining 5'-integrity, which is crucial for sustaining mitochondrial complex III function to ensure mitochondrial biogenesis and seed development in maize.


Asunto(s)
Complejo III de Transporte de Electrones , Zea mays , Codón Iniciador/metabolismo , Complejo III de Transporte de Electrones/genética , Regulación de la Expresión Génica de las Plantas , Mitocondrias/genética , Mitocondrias/metabolismo , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/metabolismo , Empalme del ARN , Semillas/metabolismo , Zea mays/metabolismo
8.
Plant Cell Rep ; 42(10): 1687-1699, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37479884

RESUMEN

KEY MESSAGE: The reduction in endogenous gibberellin improved drought resistance, but decreased cellulose and lignin contents, which made the mutant prone to lodging. It is well known that gibberellin (GA) is a hormone that plays a vital role in plant growth and development. In recent years, a growing number of studies have found that gibberellin plays an important role in regulating the plant height, stem length, and stressed growth surfaces. In this study, a dwarf maize mutant was screened from an EMS-induced mutant library of maize B73. The mutated gene was identified as KS, which encodes an ent-kaurene synthase (KS) enzyme functioning in the early biosynthesis of GA. The mutant was named as ks3-1. A significant decrease in endogenous GA levels was verified in ks3-1. A significantly decreased stem strength of ks3-1, compared with that of wild-type B73, was found. Significant decreases in the cellulose and lignin contents, as well as the number of epidermal cell layers, were further characterized in ks3-1. The expression levels of genes responsible for cellulose and lignin biosynthesis were induced by exogenous GA treatment. Under drought stress conditions, the survival rate of ks3-1 was significantly higher than that of the wild-type B73. The survival rates of both wild-type B73 and ks3-1 decreased significantly after exogenous GA treatment. In conclusion, we summarized that a decreased level of GA in ks3-1 caused a decreased plant height, a decreased stem strength as a result of cell wall defects, and an increased drought tolerance. Our results shed light on the importance of GA and GA-defective mutants in the genetic improvement of maize and breeding maize varieties.


Asunto(s)
Resistencia a la Sequía , Zea mays , Zea mays/genética , Giberelinas/farmacología , Lignina , Fitomejoramiento , Celulosa
9.
Plant Cell Rep ; 42(4): 749-761, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36754893

RESUMEN

KEY MESSAGE: D129 is an EMS-induced mutant with dwarf phenotype, which has important breeding potential to cultivate new varieties suitable for high-density planting in maize Plant height is one of the important agronomic traits that affecting maize planting density, identification of superior dwarf mutants can provide important genetic materials for breeding new varieties suitable for high-density planting. In this study, we identified a dwarf mutant, d129, from maize EMS-induced mutant population. Gene mapping indicated that a G-to-A transition in the second exon of the br2 gene was responsible for the dwarf phenotype of the d129 mutant using MutMap method, which was further validated through allelism testing. Compared with WT plants, the average plant height and ear height of d129 were reduced by 26.67% and 39.43%, respectively, mainly due to a decrease in internode length. Furthermore, the d129 mutant exhibited increased internode diameter, which is important for increasing planting density due to the lodging resistance may be enhanced. Endogenous hormone measurement demonstrated that the contents of IAA and GA3 in the internode of the mutant were significantly lower than that of WT plants. RNA-seq analysis indicated that at least fifteen auxin-responsive and signaling-related genes exhibited differential expression, and some genes involved in cell development and other types of hormone signaling pathways, were also identified from the differential expressed genes. These genes may be related to the reduced hormone contents and decreased elongation of internode cells of the d129 mutant. Our study provided a novel dwarf mutant which can be applied in maize breeding to cultivate new varieties suitable for high-density planting.


Asunto(s)
Fitomejoramiento , Zea mays , Alelos , Zea mays/genética , Mapeo Cromosómico , Fenotipo , Hormonas , Regulación de la Expresión Génica de las Plantas/genética
10.
Plant Cell Rep ; 43(1): 13, 2023 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-38135780

RESUMEN

KEY MESSAGE: ZmMRPA6 was cloned and characterized as the first ATP-binding cassette (ABC) transporter in maize to be proven to participate in cold and salt tolerance. Homologous genes AtABCC4 and AtABCC14 of ZmMRPA6 also responded to salt stress. ATP-binding cassette (ABC) proteins are major transmembrane transporters that play significant roles in plant development against various abiotic stresses. However, available information regarding stress-related ABC genes in maize is minimal. In this study, a maize ABC transporter gene, ZmMRPA6, was identified through genome-wide association analysis (GWAS) for cold tolerance in maize seeds germination and functionally characterized. During germination and seedling stages, the zmmrpa6 mutant exhibited enhanced resistance to cold or salt stress. Mutated of ZmMRPA6 did not affect the expression of downstream response genes related cold or salt response at the transcriptional level. Mass spectrometry analysis revealed that most of the differential proteins between zmmrpa6 and wild-type plants were involved in response to stress process including oxidative reduction, hydrolase activity, small molecule metabolism, and photosynthesis process. Meanwhile, the plants which lack the ZmMRPA6 homologous genes AtABCC4 or AtABCC14 were sensitive to salt stress in Arabidopsis. These results indicated that ZmMRPA6 and its homologous genes play a conserved role in cold and salt stress, and functional differentiation occurs in monocotyledonous and dicotyledonous plants. In summary, these findings dramatically improved our understanding of the function of ABC transporters resistance to abiotic stresses in plants.


Asunto(s)
Arabidopsis , Zea mays , Zea mays/genética , Zea mays/metabolismo , Tolerancia a la Sal/genética , Transportadoras de Casetes de Unión a ATP/genética , Transportadoras de Casetes de Unión a ATP/metabolismo , Estudio de Asociación del Genoma Completo , Plantas Modificadas Genéticamente/genética , Estrés Salino , Arabidopsis/genética , Estrés Fisiológico/genética , Adenosina Trifosfato/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Frío
11.
BMC Plant Biol ; 22(1): 328, 2022 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-35799118

RESUMEN

BACKGROUND: Flowering time is an important agronomic trait of crops and significantly affects plant adaptation and seed production. Flowering time varies greatly among maize (Zea mays) inbred lines, but the genetic basis of this variation is not well understood. Here, we report the comprehensive genetic architecture of six flowering time-related traits using a recombinant inbred line (RIL) population obtained from a cross between two maize genotypes, B73 and Abe2, and combined with genome-wide association studies to identify candidate genes that affect flowering time. RESULTS: Our results indicate that these six traits showed extensive phenotypic variation and high heritability in the RIL population. The flowering time of this RIL population showed little correlation with the leaf number under different environmental conditions. A genetic linkage map was constructed by 10,114 polymorphic markers covering the whole maize genome, which was applied to QTL mapping for these traits, and identified a total of 82 QTLs that contain 13 flowering genes. Furthermore, a combined genome-wide association study and linkage mapping analysis revealed 17 new candidate genes associated with flowering time. CONCLUSIONS: In the present study, by using genetic mapping and GWAS approaches with the RIL population, we revealed a list of genomic regions and candidate genes that were significantly associated with flowering time. This work provides an important resource for the breeding of flowering time traits in maize.


Asunto(s)
Estudio de Asociación del Genoma Completo , Zea mays , Mapeo Cromosómico/métodos , Ligamiento Genético , Estudio de Asociación del Genoma Completo/métodos , Fenotipo , Fitomejoramiento , Polimorfismo de Nucleótido Simple/genética , Sitios de Carácter Cuantitativo/genética , Zea mays/genética
12.
Plant Biotechnol J ; 20(3): 526-537, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34687251

RESUMEN

Maize height is determined by the number of nodes and the length of internodes. Node number is driven by intercalary meristem formation and internode length by intercalary cell elongation, respectively. However, mechanisms regulating establishment of nodes and internode growth are unclear. We screened EMS-induced maize mutants and identified a dwarf mutant zm66, linked to a single base change in TERMINAL EAR 1 (ZmTE1). Detailed phenotypic analysis revealed that zm66 (zmte1-2) has shorter internodes and increased node numbers, caused by decreased cell elongation and disordered intercalary meristem formation, respectively. Transcriptome analysis showed that auxin signalling genes are also dysregulated in zmte1-2, as are cell elongation and cell cycle-related genes. This argues that ZmTE1 regulates auxin signalling, cell division, and cell elongation. We found that the ZmWEE1 kinase phosphorylates ZmTE1, thus confining it to the nucleus and probably reducing cell division. In contrast, the ZmPP2Ac-2 phosphatase promotes dephosphorylation and cytoplasmic localization of ZmTE1, as well as cell division. Taken together, ZmTE1, a key regulator of plant height, is responsible for maintaining organized formation of internode meristems and rapid cell elongation. ZmWEE1 and ZmPP2Ac-2 might balance ZmTE1 activity, controlling cell division and elongation to maintain normal maize growth.


Asunto(s)
Meristema , Zea mays , Ciclo Celular , Regulación de la Expresión Génica de las Plantas/genética , Ácidos Indolacéticos , Meristema/genética , Zea mays/genética
13.
Plant Cell ; 31(6): 1328-1343, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30996077

RESUMEN

It has long been recognized that stomatal movement modulates CO2 availability and as a consequence the photosynthetic rate of plants, and that this process is feedback-regulated by photoassimilates. However, the genetic components and mechanisms underlying this regulatory loop remain poorly understood, especially in monocot crop species. Here, we report the cloning and functional characterization of a maize (Zea mays) mutant named closed stomata1 (cst1). Map-based cloning of cst1 followed by confirmation with the clustered regularly interspaced short palindromic repeats (CRISPR)/ CRISPR associated protein 9 system identified the causal mutation in a Clade I Sugars Will Eventually be Exported Transporters (SWEET) family gene, which leads to the E81K mutation in the CST1 protein. CST1 encodes a functional glucose transporter expressed in subsidiary cells, and the E81K mutation strongly impairs the oligomerization and glucose transporter activity of CST1. Mutation of CST1 results in reduced stomatal opening, carbon starvation, and early senescence in leaves, suggesting that CST1 functions as a positive regulator of stomatal opening. Moreover, CST1 expression is induced by carbon starvation and suppressed by photoassimilate accumulation. Our study thus defines CST1 as a missing link in the feedback-regulation of stomatal movement and photosynthesis by photoassimilates in maize.


Asunto(s)
Proteínas Facilitadoras del Transporte de la Glucosa/metabolismo , Fotosíntesis/fisiología , Proteínas Facilitadoras del Transporte de la Glucosa/genética , Fotosíntesis/genética , Hojas de la Planta/metabolismo , Estomas de Plantas/metabolismo , Zea mays/metabolismo
14.
Theor Appl Genet ; 135(9): 3039-3055, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35788748

RESUMEN

KEY MESSAGE: The novel ZmR1CQ01 allele for maize anthocyanin synthesis was identified, and the biological function and regulatory molecular mechanisms of three ZmR1 alleles were unveiled. Anthocyanins in maize are valuable to human health. The R1 gene family is one of the important regulatory genes for the tissue-specific distribution of anthocyanins. R1 gene allelic variations are abundant and its biological function and regulatory molecular mechanisms are not fully understood. By exploiting genetic mapping and transgenic verification, we found that anthocyanin pigmentation in maize leaf midrib was controlled by ZmR1 on chromosome 10. Allelism test of maize zmr1 EMS mutants confirmed that anthocyanin pigmentation in leaf sheath was also controlled by ZmR1. ZmR1CQ01 was a novel ZmR1 allelic variation obtained from purple maize. Its overexpression caused the whole maize plant to turn purple. ZmR1B73 allele confers anthocyanin accumulation in near ground leaf sheath rather than in leaf midribs. The mRNA expression level of ZmR1B73 was low in leaf midribs, resulting in no anthocyanin accumulation. ZmR1B73 overexpression promoted anthocyanin accumulation in leaf midribs. Loss of exon 5 resulted in ZmR1ZN3 allele function destruction and no anthocyanin accumulation in leaf midrib and leaf sheath. DNA affinity purification sequencing revealed 1010 genes targeted by ZmR1CQ01, including the bz2 in anthocyanin synthesis pathway. RNA-seq analysis showed 55 genes targeted by ZmR1CQ01 changed the expression level significantly, and the expression of genes encoding key enzymes in flavonoid and phenylpropanoid biosynthesis pathways were significantly up-regulated. ZmR1 functional molecular marker was developed. These results revealed the effects of transcriptional regulation and sequence variation on ZmR1 function and identified the genes targeted by ZmR1CQ01 at the genome-wide level.


Asunto(s)
Antocianinas , Zea mays , Alelos , ADN , Regulación de la Expresión Génica de las Plantas , Pigmentación/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , ARN Mensajero , Zea mays/genética , Zea mays/metabolismo
15.
Plant Biotechnol J ; 19(10): 1937-1951, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-33934485

RESUMEN

Salt stress is a major devastating abiotic factor that affects the yield and quality of maize. However, knowledge of the molecular mechanisms of the responses to salt stress in maize is limited. To elucidate the genetic basis of salt tolerance traits, a genome-wide association study was performed on 348 maize inbred lines under normal and salt stress conditions using 557 894 single nucleotide polymorphisms (SNPs). The phenotypic data for 27 traits revealed coefficients of variation of >25%. In total, 149 significant SNPs explaining 6.6%-11.2% of the phenotypic variation for each SNP were identified. Of the 104 identified quantitative trait loci (QTLs), 83 were related to salt tolerance and 21 to normal traits. Additionally, 13 QTLs were associated with two to five traits. Eleven and six QTLs controlling salt tolerance traits and normal root growth, respectively, co-localized with QTL intervals reported previously. Based on functional annotations, 13 candidate genes were predicted. Expression levels analysis of 12 candidate genes revealed that they were all responsive to salt stress. The CRISPR/Cas9 technology targeting three sites was applied in maize, and its editing efficiency reached 70%. By comparing the biomass of three CRISPR/Cas9 mutants of ZmCLCg and one zmpmp3 EMS mutant with their wild-type plants under salt stress, the salt tolerance function of candidate genes ZmCLCg and ZmPMP3 were confirmed. Chloride content analysis revealed that ZmCLCg regulated chloride transport under sodium chloride stress. These results help to explain genetic variations in salt tolerance and provide novel loci for generating salt-tolerant maize lines.


Asunto(s)
Estudio de Asociación del Genoma Completo , Zea mays , Disección , Fenotipo , Polimorfismo de Nucleótido Simple/genética , Tolerancia a la Sal/genética , Plantones/genética , Zea mays/genética
16.
J Exp Bot ; 72(18): 6230-6246, 2021 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-34235535

RESUMEN

Cadmium (Cd) accumulation in maize grains is detrimental to human health. Developing maize varieties with low Cd content is important for safe consumption of maize grains. However, the key genes controlling maize grain Cd accumulation have not been cloned. Here, we identified one major locus for maize grain Cd accumulation (qCd1) using a genome-wide association study (GWAS) and bulked segregant RNA-seq analysis with a biparental segregating population of Jing724 (low-Cd line) and Mo17 (high-Cd line). The candidate gene ZmHMA3 was identified by fine mapping and encodes a tonoplast-localized heavy metal P-type ATPase transporter. An ethyl methane sulfonate mutant analysis and an allelism test confirmed that ZmHMA3 influences maize grain Cd accumulation. A transposon in intron 1 of ZmHMA3 is responsible for the abnormal amino acid sequence in Mo17. Based on the natural sequence variations in the ZmHMA3 gene of diverse maize lines, four PCR-based molecular markers were developed, and these were successfully used to distinguish five haplotypes with different grain Cd contents in the GWAS panel and to predict grain Cd contents of widely used maize inbred lines and hybrids. These molecular markers can be used to breed elite maize varieties with low grain Cd contents.


Asunto(s)
ATPasas Tipo P , Contaminantes del Suelo , Cadmio/metabolismo , Grano Comestible/metabolismo , Estudio de Asociación del Genoma Completo , Fitomejoramiento , Zea mays/genética , Zea mays/metabolismo
17.
Plant J ; 97(3): 530-542, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30375131

RESUMEN

Epicuticular waxes provide a hydrophobic barrier that protects land plants from environmental stresses. To elucidate the molecular functions of maize glossy mutants that reduce the accumulation of epicuticular waxes, eight non-allelic glossy mutants were subjected to transcriptomic comparisons with their respective wild-type siblings. Transcriptomic comparisons identified 2279 differentially expressed (DE) genes. Other glossy genes tended to be down-regulated in glossy mutants; by contrast stress-responsive pathways were induced in mutants. Gene co-expression network (GCN) analysis found that glossy genes were clustered, suggestive of co-regulation. Genes that potentially regulate the accumulation of glossy gene transcripts were identified via a pathway level co-expression analysis. Expression data from diverse organs showed that maize glossy genes are generally active in young leaves, silks, and tassels, while largely inactive in seeds and roots. Through reverse genetics, a DE gene homologous to Arabidopsis CER8 and co-expressed with known glossy genes was confirmed to participate in epicuticular wax accumulation. GCN data-informed forward genetics approach enabled cloning of the gl14 gene, which encodes a putative membrane-associated protein. Our results deepen understanding of the transcriptional regulation of the genes involved in the accumulation of epicuticular wax, and provide two maize glossy genes and a number of candidate genes for further characterization.


Asunto(s)
Regulación de la Expresión Génica de las Plantas/genética , Ceras/metabolismo , Zea mays/genética , Expresión Génica , Epidermis de la Planta/genética , Epidermis de la Planta/metabolismo , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Zea mays/metabolismo
18.
BMC Plant Biol ; 20(1): 553, 2020 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-33297963

RESUMEN

BACKGROUND: Pentatricopeptide repeat (PPR) proteins compose a large protein family whose members are involved in both RNA processing in organelles and plant growth. Previous reports have shown that E-subgroup PPR proteins are involved in RNA editing. However, the additional functions and roles of the E-subgroup PPR proteins are unknown. RESULTS: In this study, we developed and identified a new maize kernel mutant with arrested embryo and endosperm development, i.e., defective kernel (dek) 55 (dek55). Genetic and molecular evidence suggested that the defective kernels resulted from a mononucleotide alteration (C to T) at + 449 bp within the open reading frame (ORF) of Zm00001d014471 (hereafter referred to as DEK55). DEK55 encodes an E-subgroup PPR protein within the mitochondria. Molecular analyses showed that the editing percentage of 24 RNA editing sites decreased and that of seven RNA editing sites increased in dek55 kernels, the sites of which were distributed across 14 mitochondrial gene transcripts. Moreover, the splicing efficiency of nad1 introns 1 and 4 and nad4 intron 1 significantly decreased in dek55 compared with the wild type (WT). These results indicate that DEK55 plays a crucial role in RNA editing at multiple sites as well as in the splicing of nad1 and nad4 introns. Mutation in the DEK55 gene led to the dysfunction of mitochondrial complex I. Moreover, yeast two-hybrid assays showed that DEK55 interacts with two multiple organellar RNA-editing factors (MORFs), i.e., ZmMORF1 (Zm00001d049043) and ZmMORF8 (Zm00001d048291). CONCLUSIONS: Our results demonstrated that a mutation in the DEK55 gene affects the mitochondrial function essential for maize kernel development. Our results also provide novel insight into the molecular functions of E-subgroup PPR proteins involved in plant organellar RNA processing.


Asunto(s)
Complejo I de Transporte de Electrón/genética , NADH Deshidrogenasa/genética , Proteínas de Plantas/genética , Edición de ARN , Empalme del ARN , Zea mays/genética , Secuencia de Bases , Sitios de Unión/genética , Complejo I de Transporte de Electrón/metabolismo , Regulación de la Expresión Génica de las Plantas , Intrones/genética , Mitocondrias/genética , Mitocondrias/metabolismo , Proteínas Mitocondriales/clasificación , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Mutación , NADH Deshidrogenasa/metabolismo , Filogenia , Proteínas de Plantas/clasificación , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Semillas/genética , Semillas/metabolismo , Zea mays/metabolismo
19.
Biochem Biophys Res Commun ; 516(1): 112-119, 2019 08 13.
Artículo en Inglés | MEDLINE | ID: mdl-31200955

RESUMEN

Light is one of the most important environmental factors affecting plant growth and development. Plants use shade avoidance or tolerance strategies to adjust their growth and development thus increase their success in the competition for incoming light. To investigate the mechanism of shade responses in maize (Zea mays), we examined the anatomical and transcriptional dynamics of the early shade response in seedlings of the B73 inbred line. Transcriptome analysis identified 912 differentially expressed genes, including genes involved in light signaling, auxin responses, and cell elongation pathways. Grouping transcription factor family genes and performing enrichment analysis identified multiple types of transcription factors that are differentially regulated by shade and predicted putative core genes responsible for regulating shade avoidance syndrome. For functional analyses, we ectopically over-expressed ZmHB53, a type II HD-ZIP transcription factor gene significantly induced by shade, in Arabidopsis thaliana. Transgenic Arabidopsis plants overexpressing ZmHB53 exhibited narrower leaves, earlier flowering, and enhanced expression of shade-responsive genes, suggesting that ZmHB53 might participates in the regulation of shade responses in maize. This study increases our understanding of the regulatory network of the shade response in maize and provides a useful resource for maize genetics and breeding.


Asunto(s)
Fototransducción , Transcriptoma , Zea mays/fisiología , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Luz , Proteínas de Plantas/genética , Plantones/genética , Plantones/fisiología , Factores de Transcripción/genética , Zea mays/genética
20.
Plant Physiol ; 177(2): 819-832, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29720555

RESUMEN

Auxin has been shown to enhance root growth inhibition under aluminum (Al) stress in Arabidopsis (Arabidopsis thaliana). However, in maize (Zea mays), auxin may play a negative role in the Al-induced inhibition of root growth. In this study, we identified mutants deficient in the maize auxin efflux carrier P-glycoprotein (ZmPGP1) after ethyl methanesulfonate mutagenesis and used them to elucidate the contribution of ZmPGP1 to Al-induced root growth inhibition. Root growth in the zmpgp1 mutant, which forms shortened roots and is hyposensitive to auxin, was less inhibited by Al stress than that in the inbred line B73. In the zmpgp1 mutants, the root tips displayed higher auxin accumulation and enhanced auxin signaling under Al stress, which was also consistent with the increased expression of auxin-responsive genes. Based on the behavior of the auxin-responsive marker transgene, DR5rev:RFP, we concluded that Al stress reduced the level of auxin in the root tip, which contrasts with the tendency of Al stress-induced Arabidopsis plants to accumulate more auxin in their root tips. In addition, Al stress induced the expression of ZmPGP1 Therefore, in maize, Al stress is associated with reduced auxin accumulation in root tips, a process that is regulated by ZmPGP1 and thus causes inhibition of root growth. This study provides further evidence about the role of auxin and auxin polar transport in Al-induced root growth regulation in maize.


Asunto(s)
Aluminio/toxicidad , Ácidos Indolacéticos/metabolismo , Proteínas de Plantas/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Zea mays/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Meristema/efectos de los fármacos , Meristema/genética , Meristema/metabolismo , Mutación , Ácidos Naftalenoacéticos/farmacología , Proteínas de Plantas/genética , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Plantas Modificadas Genéticamente , Transducción de Señal , Zea mays/genética , Zea mays/crecimiento & desarrollo , Zea mays/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA