Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
Environ Monit Assess ; 196(3): 293, 2024 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-38383675

RESUMEN

Utilizing engineered wetlands for the cultivation of vegetables can help to overcome the problems of water and food scarcity. These wetlands are primarily designed for wastewater treatment, and their efficiency and effectiveness can be improved by selecting an appropriate substrate. To investigate the potential for nutrient and microbial removal, the Abelmoschus esculentus, Solanum melongena, and Capsicum annuum L. plants were selected to grow in a hybrid constructed wetland (CW) under natural conditions. The removal efficiency of the A. esculentus, S. melongena, and C. annuum L. in the CW system varied between 59.8 to 68.5% for total phosphorous (TP), 40.3 to 53.1% for ammonium (NH4+), and 33.6 to 45.1% for total nitrogen (TN). The influent sample contained multiple pathogenic bacteria, including Alcaligenes faecalis, Staphylococcus aureus, and Escherichia coli, with Capsicum annuum exhibiting a positive association with 7 of the 11 detected species, whereas microbial removal efficiency was notably higher in the S. melongena bed, potentially attributed to temperature variations and plant-facilitated oxygen release rates. While utilizing constructed wetlands for vegetable cultivation holds promising potential to address the disparity between water and food supply and yield various environmental, economic, and social benefits, it is crucial to note that the wastewater source may contain heavy metals, posing a risk of their transmission to humans through the food chain.


Asunto(s)
Abelmoschus , Capsicum , Solanum melongena , Humanos , Aguas Residuales , Humedales , Monitoreo del Ambiente , Nutrientes , Plantas , Nitrógeno/análisis , Verduras , Agua , Eliminación de Residuos Líquidos
2.
J Environ Manage ; 332: 117349, 2023 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-36738718

RESUMEN

The biggest problem in the treatment of rural domestic sewage is that the existing treatment projects require the big investment and the high operation and maintenance costs. To overcome this problem, cost-effective, low-consuming, resource-recovering and easy-maintenance technologies are urgently demanded. To this end, a novel anoxic-aerobic system combined with integrated vertical-flow constructed wetland (IVFCW) with source separation was proposed for treating rural sewage in this study. The anoxic-aerobic system contained the anoxic filter (ANF), two-stage waterwheel driving rotating biological contactors (ts-WDRBCs). Key parameters of ts-WDRBCs were identified to be 0.6 m drop height and 4 r/min rotational speed found on oxygenated clean water experiments. Then, the optimal operating parameters were determined to be 200% reflux ratio and 3 h hydraulic retention time of ts-WDRBCs. During the 80-day operation, 91.58 ± 1.86% COD, 96.17 ± 0.92% NH4+-N, 82.71 ± 3.92% TN and 92.28 ± 2.78% TP were removed under the optimal operating parameters. Compared with other treatment technologies, this combined bio-ecological system could achieve the higher simultaneous organics and nutrients removal. The effluent NO3--N/NH4+-N concentration ratio of ts-WDRBCs was 2.15 ± 0.54, which was proved to be beneficial for plants growth. The microbial communities coexisted in each section ensured the desired removal performance of combined bio-ecological system. Summarily, high performance together with low investment costs and cheap operation costs are characteristics that make this system a promising and competitive alternative for rural sewage treatment.


Asunto(s)
Aguas del Alcantarillado , Eliminación de Residuos Líquidos , Humedales , Nitrógeno/análisis , Fósforo , China , Nutrientes
3.
J Environ Sci (China) ; 127: 799-810, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36522107

RESUMEN

With growing interest in resource recovery and/or reuse, waste materials have been considered a promising alternative for phosphorus (P) adsorption because they are low-cost and easily accessible. Crushed autoclaved aerated concrete (CAAC), as representative construction waste, has been extensively studied for P removal in ecological technologies such as treatment wetlands. However, most of the previous studies focused on the adsorption of orthophosphate, namely reactive phosphorus, and lacked attention to non-reactive phosphorus (NRP) which is widely present in sewage. This study presents the first investigation on the potential and mechanism of CAAC removing four model NRP compounds. Adsorption isotherm and kinetics of NRP onto CAAC indicate that the removal of NRP was a chemisorption process and also involved a two-step pore diffusion process. The desorption experiment shows that different NRP species showed varying degrees of desorption. Most NRP was irreversibly adsorbed on CAAC. Among the model compounds considered in this study, the adsorption capacity and hydrolysis rate of organophosphorus were much less than that of inorganic phosphorus. Moreover, the adsorption of different NRP species by CAAC in the mesocosm study was different from the results of laboratory adsorption experiments, and the possible biodegradation was essential for the conversion and removal of NRP. The findings confirmed the validity of CAAC for NRP removal and the potential advantages of CAAC in terms of costs and environmental impact. This study will contribute to a better understanding of NRP conversion and environmental fate and that can be the basis for a refined risk assessment.


Asunto(s)
Fósforo , Humedales , Adsorción , Biodegradación Ambiental , Cinética , Eliminación de Residuos Líquidos/métodos
4.
J Environ Manage ; 278(Pt 1): 111561, 2021 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-33126199

RESUMEN

Excessive emissions of nitrogen (N) and phosphorus (P) pollutants are leading to increased eutrophication of water bodies. Biological N and P removal processes have become a research priority in the field of sewage treatment with the aim of improving sewage discharge standards in countries worldwide. Denitrifying P removal processes are more efficient for solving problems related to carbon source competition, sludge age conflict, and high aeration energy consumption compared to traditional biological N and P removal processes, but they are easy to produce nitrous oxide (N2O) in the process of sewage treatment. N2O is a greenhouse gas with a global warming potential approximately 190-270 times that of CO2 and 4-21 times that of CH4, which was produced and released into the environmental in denitrifying P removal systems under conditions of a low C/N ratio, high dissolved oxygen, and low activity of denitrifying phosphorus accumulating organisms (DPAOs). This paper reviews the emission characteristics and influencing factors of N2O during denitrifying P removal processes and proposes appropriate strategies for controlling the emission of N2O. This work serves as a basis for the development of new sewage treatment processes and the reduction of greenhouse gas emissions in future wastewater treatment plants.


Asunto(s)
Óxido Nitroso , Fósforo , Reactores Biológicos , Desnitrificación , Nitritos , Óxido Nitroso/análisis , Aguas del Alcantarillado
5.
Water Sci Technol ; 83(1): 233-246, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33460421

RESUMEN

Rural domestic wastewater (RDW), one of the non-point pollution sources, has become a significant object related to sanitation improvement and water pollution control in Taihu Lake Basin, China. Current research on RDW characteristics and management with source separation is limited. In this study, a source-separated investigation into the characteristics of RDW was conducted, and the management suggestions were proposed. The results showed that the average RDW production coefficient was 94.1 ± 31.6 (range: 71.8-143.0) liters per capita (person) per day. Household-level wastewater generation peaked two or three times daily, and the synchronous fluctuation could cause hydraulic loading shocks to treatment facilities. The population equivalents of chemical oxygen demand, ammonium nitrogen (NH4+-N), total nitrogen (TN), and total phosphorus (TP) in RDW were 78.7, 3.7, 4.12, and 0.8 g/(cap·d), respectively. Blackwater from water closet source accounted for 30.4% of the total wastewater amount, contributing 93.0%, 81.7%, and 67.3% to loads of NH4+-N, TN, and TP, respectively. Graywater from the other sources with low nutrient-related pollutant concentrations and loads, accounting for 69.6% of the total wastewater amount, was a considerable alternative water resource. The quantitative and qualitative characteristics indicated that GW and BW had the potential of being reused in relation to water and nutrients, respectively.


Asunto(s)
Aguas Residuales , Contaminantes Químicos del Agua , China , Monitoreo del Ambiente , Humanos , Nitrógeno/análisis , Fósforo/análisis , Contaminantes Químicos del Agua/análisis
6.
J Environ Manage ; 251: 109599, 2019 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-31561140

RESUMEN

Black water is highly concentrated human waste water but represents only a minor portion of domestic sewage. A modified type of anaerobic baffled reactor (ABR) was studied to assess its potential for pretreating black water in rural China. The classification of microbial structure was also investigated to confirm its potential in application. The structure of the ABR was modified according to demand for application in practice. A hydraulic retention time (HRT) of 48 h was chosen as the optimal HRT after comparison among 24 h, 36 h, 48 h, and 72 h. Under the 48 h HRT, the ABR achieved average removal efficiencies of 94.05% of chemical oxygen demand (COD), 28.78% of total nitrogen (TN), 14.21% of ammonium nitrogen (NH4+-), and 32.54% of total phosphorus (TP) during 112 days of continuous operation. Samples from three different compartments were collected after 60-day continuous operation for bacterial and archaeal community investigation by 16S rRNA. Abundant degradation-related bacteria and methanogenic archaea were found in the ABR. The three samples had similar bacterial compositions at phylum, class, and genus levels, but the percentages of bacteria differed among the compartments. The distribution of archaea showed succession with the flow direction. In general, the ABR shows good performance under an HRT of 48 h and shows good potential for practical application.


Asunto(s)
Reactores Biológicos , Eliminación de Residuos Líquidos , Anaerobiosis , China , ARN Ribosómico 16S , Aguas del Alcantarillado , Agua
7.
Water Sci Technol ; 79(10): 1985-1994, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-31294715

RESUMEN

Constructed wetlands (CWs) are an aesthetic and sustainable form to treat wastewater, however, their performance can be increased by improving a number of factors. The pilot-scale hybrid constructed wetland (CW) system was the combination of constructed floating treatment wetlands (CFWs) and horizontal subsurface flow constructed wetlands (HSFCWs); operated for a year and covered all seasons. The research was conducted to investigate the performance of the CW system regarding water depth, spatial, and seasonal removal of pollutants. Nine economical plants species were selected and divided into four groups to grow in CW-I to CW-IV, respectively. Removal increased along the bed and most of the total phosphorus (TP) removal occurred in the second bed, whereas total nitrogen (TN) and ammonium (NH4) removal were associated with the plant root system and biomass. Optimum removal of nutrients with respect to water depth was at 35 cm. TN and NH4 removal patterns were similar in different CWs. TN and NH4 removal were higher during summer compared to winter; only CW-IV showed the opposite trend.


Asunto(s)
Nutrientes , Eliminación de Residuos Líquidos/métodos , Humedales , Nitrógeno , Estaciones del Año , Aguas Residuales
8.
Water Sci Technol ; 2017(2): 578-591, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29851411

RESUMEN

A novel magnetic calcium silicate hydrate composite (Fe3O4@CSH) was proposed for phosphorus (P) removal and recovery from a synthetic phosphate solution, facilitated by a magnetic separation technique. The Fe3O4@CSH material was characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), powder Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), zeta-potential and magnetic curves. The chemical composition and structure of Fe3O4@CSH and the successful surface loading of hydroxyl functional groups were confirmed. Phosphate adsorption kinetics, isotherm, and thermodynamic experiments showed that adsorption reaches equilibrium at 24 h, with a maximum adsorption capacity of 55.84 mg P/g under optimized experimental conditions. Adsorption kinetics fitted well to the pseudo second-order model, and equilibrium data fit the Freundlich isotherm model. Thermodynamic analysis provided a positive value for ΔH° (129.84 KJ/mol) and confirmed that phosphate adsorption on these materials is endothermic. The P-laden Fe3O4@CSH materials could be rapidly separated from aqueous solution by a magnetic separation technique within 1 min. A removal rate of more than 60% was still obtained after eight adsorption/desorption cycles, demonstrating the excellent reusability of the particles. The results demonstrated that the Fe3O4@CSH materials had high P-adsorption efficiency and were reusable.


Asunto(s)
Compuestos de Calcio/análisis , Fosfatos/química , Silicatos/análisis , Eliminación de Residuos Líquidos/métodos , Contaminantes Químicos del Agua/química , Adsorción , Cinética , Magnetismo
9.
Water Sci Technol ; 2017(3): 621-635, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-30016280

RESUMEN

Natural zeolite has been recognized as a useful adsorbent for wastewater treatment for removing cations. Natural zeolite is a kind of porous material with large specific surface area but limited adsorption capacity. In recent years, emphasis has been given to prepare the surface modified zeolite using various procedures to enhance the potential of zeolite for pollutants. Modification treatment for zeolite can greatly change surface chemistry and pore structure. The article describes various modification methods of zeolite, and introduces the removal mechanisms of common pollutants such as ammonium, phosphorus and heavy metals. In addition, this review paper intends to present feasibility of applying modified zeolite to constructed wetlands which will be beneficial to achieve higher removal effect.


Asunto(s)
Fósforo/química , Aguas Residuales/química , Contaminantes Químicos del Agua/química , Purificación del Agua/métodos , Humedales , Zeolitas/química
10.
Water Sci Technol ; 73(2): 223-35, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26819377

RESUMEN

The activated sludge process (ASP) is the most generally applied biological wastewater treatment approach. Depending on the design and specific application, activated sludge wastewater treatment plants (WWTPs) can achieve biological nitrogen (N) and phosphorus (P) removal, besides the removal of organic carbon substances. However, the effluent N and P limits are getting tighter because of increased emphasis on environmental protection, and the needs for energy conservation as well as the operational reliability. Therefore, the balance between treatment performance and cost becomes a critical issue for the operations of WWTPs, which necessitates a multi-objective optimization (MOO). Recent studies in this field have shown promise in utilizing MOO to address the multiple conflicting criteria (i.e. effluent quality, operation cost, operation stability), including studying the ASP models that are primarily responsible for the process, and developing the method of MOO in the wastewater treatment process, which facilitates better optimization of process performance. Based on a better understanding of the application of MOO for ASP, a comprehensive review is conducted to offer a clear vision of the advances, and potential areas for future research are also proposed in the field.


Asunto(s)
Benchmarking , Purificación del Agua/normas , Modelos Teóricos , Nitrógeno , Fósforo , Reproducibilidad de los Resultados , Aguas del Alcantarillado , Aguas Residuales , Purificación del Agua/métodos , Calidad del Agua
11.
Water Sci Technol ; 69(10): 2052-8, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24845320

RESUMEN

Optimal design of activated sludge process (ASP) using multi-objective optimization was studied, and a benchmark process in Benchmark Simulation Model 1 (BSM1) was taken as a target process. The objectives of the study were to achieve four indexes of percentage of effluent violation (PEV), overall cost index (OCI), total volume and total suspended solids, making up four cases for comparative analysis. Models were solved by the non-dominated sorting genetic algorithm in MATLAB. Results show that: ineffective solutions can be rejected by adding constraints, and newly added objectives can affect the relationship between the existing objectives; taking Pareto solutions as process parameters, the performance indexes of PEV and OCI can be improved more than with the default process parameters of BSM1, especially for N removal and resistance against dynamic NH4(+)-N in influent. The results indicate that multi-objective optimization is a useful method for optimal design ASP.


Asunto(s)
Benchmarking , Aguas del Alcantarillado , Eliminación de Residuos Líquidos/métodos , Reactores Biológicos , Conservación de los Recursos Energéticos
12.
Environ Technol ; 35(9-12): 1101-9, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24701905

RESUMEN

Two enhanced biological phosphorus removal (EBPR) reactors were started up at low temperatures to obtain microorganisms responsible for aerobic and anoxic phosphorus removal, namely polyphosphate-accumulating organisms (PAO) and denitrifying PAO (DPAO), and their operational performance and microbial community were together investigated in the hope of assessment of the effectiveness of the EBPR process at low temperature by combining chemical analysis and microbial community structure evolution based on polymerase chain reaction-denaturing gradient gel electrophoresis. When two reactors reached the steady state after 40 and 80 days for the anaerobic-aerobic (AO) and anaerobic-anoxic (AA) reactor operation in AO and AA modes, respectively, a good ability of anaerobic phosphorus release and aerobic or anoxic phosphorus uptake was present both in these two reactors. During this start-up process, a total of 22 bands were detected in seed, AA and AO sludge samples, including Alpha-, Beta-, Gamma- and Deltaproteobacteria, as well as Chlorobi, Firmicutes, Bacteroidetes and Actinobacteria. Of all the bands, only four bands were present in all the lanes, suggesting that shift in microbial community occurred greatly depending on the electron acceptors in this study. From evolutionary tree, it was found that microorganisms related to DPAO mostly belong to the phylum Betaproteobacteria, while microbes corresponding to PAO were present in several phyla. Overall, the new strategy proposed here was shown to be feasible for the enrichment of PAO and DPAO at low temperature, and may be regarded as a new guidance for the application of EBPR technology to practice, especially in winter.


Asunto(s)
Reactores Biológicos/microbiología , Consorcios Microbianos , Compuestos de Fósforo/aislamiento & purificación , Purificación del Agua , Electroforesis en Gel de Gradiente Desnaturalizante , Reacción en Cadena de la Polimerasa , Temperatura
13.
Chemosphere ; 358: 142142, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38677619

RESUMEN

The presence of non-reactive phosphorus (NRP) in environmental waters presents a potential risk of eutrophication and poses challenges for the removal of all phosphorus (P) fractions. This study presents the first investigation on the removal performance and mechanism of three model NRP compounds, sodium tripolyphosphate (STPP), adenosine 5'-monophosphate (AMP) and 2-phosphonobutane-1,2,4-tricarboxylic acid (PBTC), in the sediment microbial fuel cell-floating treatment wetland (SMFC-FTW). Coupling SMFC with plants proved to be effective at removing NRP via electrochemical oxidation and plant uptake, particularly the challenging-to-degrade phosphonates that contain C-P bonds. Compared with the control group, the removal efficiencies of the model NRP in SMFC were observed to increase by 11.9%-20.8%. SMFC promoted the conversion of NRP to soluble reactive phosphorus (sRP) and the transfer of P to sediment. Furthermore, the electrochemical process enhanced both plant growth and P uptake, and increased P assimilation by 72.6%. The presence of plants in the bioelectrochemical system influenced the occurrence and fate of P by efficiently assimilating sRP and supporting microbial transformation of NRP. Consequently, plants enhanced the removal efficiencies of all P fractions in the overlying water. This study demonstrated that SMFC-FTW is a promising technology to remove various NRP species in environmental waters.


Asunto(s)
Fuentes de Energía Bioeléctrica , Sedimentos Geológicos , Fósforo , Contaminantes Químicos del Agua , Humedales , Contaminantes Químicos del Agua/metabolismo , Contaminantes Químicos del Agua/análisis , Sedimentos Geológicos/química , Biodegradación Ambiental , Eutrofización , Eliminación de Residuos Líquidos/métodos
14.
Ecotoxicol Environ Saf ; 94: 138-46, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23688729

RESUMEN

Many xenobiotic compounds, especially organic pollutants in drinking water, can cause threats to human health and natural ecosystems. The ability to predict the level of pollutants and identify their source is crucial for the design of pollutant risk reduction plans. In this study, 25 semi-volatile organic compounds (SVOCs) were assessed at 16 monitoring sites of drinking water sources in Jiangsu, east China, to evaluate water quality conditions and source of pollutants. Four multivariate statistical techniques were used for this analysis. The correlation test indicated that 25 SVOCs parameters variables had a significant spatial variability (P<0.05). The results of correlation analysis, principal component analysis (PCA) and cluster analysis (CA) suggested that at least four sources, i.e., agricultural residual pesticides, industrial sewage, water transportation vehicles and miscellaneous sources, were responsible for the presence of SVOCs in the drinking water sites examined, accounting for 89.6% of the total variance in the dataset. The analysis of site similarity showed that 16 sites could be divided into high, moderate, and low pollutant level groups at (D(link)/D(max))×25<10, and each group had primary typical SVOCs. These results provide useful information for developing appropriate strategies for contaminants control in drinking water sources.


Asunto(s)
Agua Potable/química , Monitoreo del Ambiente , Compuestos Orgánicos Volátiles/análisis , Contaminantes Químicos del Agua/análisis , China , Sustancias Peligrosas/análisis , Humanos , Plaguicidas/análisis , Análisis de Componente Principal , Aguas del Alcantarillado/química , Contaminación Química del Agua/estadística & datos numéricos
15.
J Environ Sci (China) ; 25(4): 677-87, 2013 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-23923776

RESUMEN

The growth and metabolism of microbial communities on biologically activated carbon (BAC) play a crucial role in the purification of drinking water. To gain insight into the growth and metabolic characteristics of microbial communities and the efficiency of drinking water treatment in a BAC filter, we analyzed the heterotrophic plate count (HPC), phospholipid, dehydrogenase, metabolic function and water quality parameters during start-up and steady-state periods. In the start-up process of the filter with natural biofilm colonization, the variation in heterotrophic plate count levels was S-curved. The total phospholipid level was very low during the first 5 days and reached a maximum value after 40 days in the filter. The activity of dehydrogenase gradually increased during the first 30 days and then reached a plateau. The functional diversity of the microbial community in the filter increased, and then reached a relatively stable level by day 40. After an initial decrease, which was followed by an increase, the removal rate of NH4(+)-N and COD(Mn) became stable and was 80% and 28%, respectively, by day 40. The consumption rate of dissolved oxygen reached a steady level after 29 days, and remained at 18%. At the steady operation state, the levels of HPC, phospholipid, dehydrogenase activity and carbon source utilization had no significant differences after 6 months compared to levels measured on day 40. The filter was shown to be effective in removing NH4(+)-N, NO2(-)-N, COD(Mn), UV254, biodegradable dissolved organic carbon and trace organic pollutants from the influent. Our results suggest that understanding changes in the growth and metabolism of microorganisms in BAC filter could help to improve the efficiency of biological treatment of drinking water.


Asunto(s)
Bacterias/metabolismo , Reactores Biológicos/microbiología , Filtración/instrumentación , Filtración/métodos , Purificación del Agua/instrumentación , Purificación del Agua/métodos , Bacterias/efectos de los fármacos , Bacterias/crecimiento & desarrollo , Biodiversidad , Análisis de la Demanda Biológica de Oxígeno , Biomasa , Carbono/farmacología , Recuento de Colonia Microbiana , Cromatografía de Gases y Espectrometría de Masas , Procesos Heterotróficos/efectos de los fármacos , Oxígeno/análisis , Análisis de Componente Principal , Compuestos de Amonio Cuaternario/análisis , Eliminación de Residuos Líquidos , Calidad del Agua
16.
Chemosphere ; 315: 137768, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36621689

RESUMEN

A pilot-scale anaerobic-anoxic/nitrifying/induced crystallization (A2N-IC) process was established for phosphorus (P) recovery and nutrient removal from municipal wastewater with a treatment capacity of 80 m3d-1. Results show that the A2N-IC process can operate stably on a pilot scale; the recovery efficiency of influent P reached 62.2%, and the total P removal efficiency of the IC section was 65.4%. The IC section had little effect on the removal of chemical oxygen demand (COD) and nitrogen (N), and the P removal efficiency was improved. Soluble non-reactive P (sNRP) was the key factor affecting P recovery efficiency. Although P recovery increases the construction and maintenance costs, the process can be profitable if a market for P recovery products is established. To improve the P recovery efficiency, attention should be paid to the effects of sNRP and dissolved organic matter (DOM) on P recovery, and P-rich sludge should be considered.


Asunto(s)
Fósforo , Eliminación de Residuos Líquidos , Humanos , Anaerobiosis , Eliminación de Residuos Líquidos/métodos , Cristalización , Reactores Biológicos , Aguas del Alcantarillado/química , Hipoxia , Nitrógeno/análisis
17.
Environ Sci Pollut Res Int ; 30(11): 28407-28421, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36680723

RESUMEN

Two interrelated problems exist: the non-renewability of phosphate rock as a resource and the excess phosphate in the water system lead to eutrophication. Removal and recovery of phosphorus (P) from waste streams at wastewater treatment plants (WWTPs) is one of the promising solutions. This paper reviews strategies for P recovery from waste streams in WWTPs are reviewed, and the main P recovery processes were broken down into three parts: enrichment, extraction, and crystallization. On this basis, the present P recovery technology was summarized and compared. The choice of P recovery technology depends on the process of sewage treatment and sludge treatment. Most P recovery processes can meet the financial requirements since the recent surge in phosphate rock prices. The safety requirements of P recovery products add a high cost to toxic substance removal, so it is necessary to control the discharge of toxic substances such as heavy metals and persistent organic pollutants from the source.


Asunto(s)
Fósforo , Purificación del Agua , Fósforo/química , Eliminación de Residuos Líquidos/métodos , Cristalización , Aguas del Alcantarillado/química , Fosfatos , Purificación del Agua/métodos
18.
Heliyon ; 9(11): e22339, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38045187

RESUMEN

The integration of anoxic filter and aerobic rotating biological contactor shows promise in treating rural domestic sewage. It offers high efficiency, low sludge production, and strong shock resistance. However, further optimization is needed for odor control, pollutant removal, and power consumption. In this study, the investigation on a one-pump-drive lab-scale device of retention anoxic filter (RAF) integrated with hydraulic rotating bio-contactor (HRBC) and its optimal operation mode were conducted. During the 50-day operation, optimal operation parameters were investigated. These parameters included a 175 % reflux ratio (RR), 5-h hydraulic retention time in the RAF (HRTRAF), and 2.5-h hydraulic retention time in the HRBC (HRTHRBC). Those conditions characterized a micro-aerobic environment (DO: 0.6-0.8 mg/L) in RAF, inducing improved deodorization (89.3 % sulfide removal) and denitrification (85.9 % nitrate removal) simultaneously. During the operation period, 84.79 ± 3.87 % COD, 82.71± 2.06 % NH4+-N, 74.83 ± 2.06 % TN, 91.68± 2.12 % S2-, and 89.04 ± 1.68 % TON were removed in RAF-HRBC. Based on large amount of operational data, organic loading rate curves of RAF-HRBC were validated and calibrated as a crucial reference to aid in full-scale designs and applications. The richness of microbial community was improved in both RAF and HRBC. In the RAF, the autotrophic sulfide-oxidizing nitrate-reducing bacteria (a-son) and heterotrophic sulfide-oxidizing nitrate-reducing bacteria (h-son) were selectively enriched, which intensified the sulfide removal and denitrification process. In the two-stage HRBC system, the 1st stage RBC was primarily composed of organics degraders, while the 2nd stage RBC consisted mainly of ammonium oxidizers. Overall, the integrated RAF-HRBC process holds significant potential for simultaneously improving pollutant removal and in-situ odor mitigation in decentralized domestic sewage treatment. This process specifically contributes to enhancing environmental sustainability and operational efficiency.

19.
Sci Total Environ ; 815: 152896, 2022 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-34998752

RESUMEN

Excess phosphorus (P) in surface runoff has significant deleterious impacts on water quality through eutrophication. Commonly, P is transported via non-point pollution and the proportion of easily plant-available reactive P (RP) among other P forms may vary significantly. Non-reactive P (NRP) can potentially contribute to the eutrophication of waterbodies, however the cleavage into bio-available P forms and eventually their biological uptake remains uncertain. This holds also true for floating treatment wetlands (FTWs) which became established as nutrient mitigation measures for surface waters in recent years. However, little information is available about the conversion and removal of NRP in FTWs. In this study, the conversion and removal of different forms of P in FTWs were investigated. Experiments were operated in batch mode and treatments consisted of (1) two concentration levels: a high P concentration of 3.0 mg/L and a low P concentration of 1.0 mg/L, and (2) four mesocosm treatments: (a) artificial roots only, (b) substrates only, (c) plants only, (d) plants and substrates. The results showed that RP removal mainly depended on sedimentation, substrate sorption, and biological assimilation. The removal of NRP mainly depended on hydrolysis, microbial-mediated conversion, and biological absorption. The combination of plant and substrate provided stable and efficient phosphorus removal performance in high P conditions, while plants were important for P removal in low P conditions. Living plants were indispensable and greatly affected the performance of FTWs. The specific enrichment and culling of microorganisms by plants resulted in the formation of specific rhizosphere microbial communities and promoted the removal of NRP. Pseudomonas, Enterobacter, Acidovorax might be responsible for P mineralization in the FTWs. Comprehensive analysis indicated that the conversion and removal pathways of P in the FTWs were not mutually independent, and the plant-microbe-substrate interactions cannot be underestimated.


Asunto(s)
Contaminantes Químicos del Agua , Humedales , Nitrógeno/análisis , Fósforo , Plantas , Contaminantes Químicos del Agua/análisis
20.
Sci Total Environ ; 839: 156275, 2022 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-35644401

RESUMEN

Recovery of phosphorus (P) from wastewater can help establish a new P cycle. However, there are many P forms in wastewater, not always in reactive forms, which are the most suitable for direct recovery. The enhanced biological phosphorus removal process with sidestream phosphorus recovery (EBPR-SPR) is an effective way to remove and recover P resources in wastewater, but there is a lack of research on the transformation and fate of non-reactive phosphorus (NRP) in it. This study selected four model NRP to investigate their transformation and fate in an EBPR-SPR process. The transformation of NRP in pure water and activated sludge under anaerobic and aerobic conditions were compared. The effects of Ca/P ratio and pH on NRP recovery were studied, and the recovery products of NRP were characterized. It was found that NRP containing phosphoanhydride and phosphoester bonds were more easily hydrolyzed to reactive P (RP) than that containing PC bonds. NRP will be adsorbed and accumulated by activated sludge, and activated sludge will accelerate the conversion of NRP to RP. Tripolyphosphate can form complex precipitation with Ca2+. When multiform P co-existed, Ca2+ preferably complexed with polyphosphate, which harmed RP recovery. The conversion of NRP should be strengthened to recover more P in wastewater. The effect of NRP should be considered when recovering P from wastewater.


Asunto(s)
Fósforo , Aguas del Alcantarillado , Reactores Biológicos , Fósforo/química , Aguas del Alcantarillado/química , Aguas Residuales , Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA