Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 8007, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38580673

RESUMEN

Photocatalysts consisting of Z-scheme heterojunctions are commonly used in wastewater treatment due to their exceptional reactivity in photocatalysis and highly efficient visible-light utilization. In this work, Fe2O3-decorated MoO3 rods were synthesized through a two-step method and their photodegradation of methylene blue (MB) was evaluated. The Fe2O3/MoO3 rods were characterized by XRD, SEM, micro-Raman, XPS, UV-Vis DRS, and PL to investigate their structural, morphological, and optical properties. The results indicate that the photodegradation efficiency of Fe2O3/MoO3 improved through a reduction in the gap energy and persistence of a 1D hexagonal prism structure. The degradation rate of MB was enhanced from 31.7 to 91.5% after irradiation for 180 min owing to electron-hole separation and Fenton-like process. Formation of the OH radical is a key factor in the photodegradation reaction and with the addition of H2O2 the efficiency can further improve via a Fenton-like mechanism. Furthermore, the Z-scheme mechanism concurrently delineated. The Fe2O3/MoO3 rod composites were also found to retain high photocatalytic efficiency after being reused five times, which may be useful for future applications.

2.
Front Immunol ; 15: 1334882, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38426112

RESUMEN

Immunosuppression increases the risk of nosocomial infection in patients with chronic critical illness. This exploratory study aimed to determine the immunometabolic signature associated with nosocomial infection during chronic critical illness. We prospectively recruited patients who were admitted to the respiratory care center and who had received mechanical ventilator support for more than 10 days in the intensive care unit. The study subjects were followed for the occurrence of nosocomial infection until 6 weeks after admission, hospital discharge, or death. The cytokine levels in the plasma samples were measured. Single-cell immunometabolic regulome profiling by mass cytometry, which analyzed 16 metabolic regulators in 21 immune subsets, was performed to identify immunometabolic features associated with the risk of nosocomial infection. During the study period, 37 patients were enrolled, and 16 patients (43.2%) developed nosocomial infection. Unsupervised immunologic clustering using multidimensional scaling and logistic regression analyses revealed that expression of nuclear respiratory factor 1 (NRF1) and carnitine palmitoyltransferase 1a (CPT1a), key regulators of mitochondrial biogenesis and fatty acid transport, respectively, in natural killer (NK) cells was significantly associated with nosocomial infection. Downregulated NRF1 and upregulated CPT1a were found in all subsets of NK cells from patients who developed a nosocomial infection. The risk of nosocomial infection is significantly correlated with the predictive score developed by selecting NK cell-specific features using an elastic net algorithm. Findings were further examined in an independent cohort of COVID-19-infected patients, and the results confirm that COVID-19-related mortality is significantly associated with mitochondria biogenesis and fatty acid oxidation pathways in NK cells. In conclusion, this study uncovers that NK cell-specific immunometabolic features are significantly associated with the occurrence and fatal outcomes of infection in critically ill population, and provides mechanistic insights into NK cell-specific immunity against microbial invasion in critical illness.


Asunto(s)
COVID-19 , Infección Hospitalaria , Humanos , Enfermedad Crítica , Infección Hospitalaria/epidemiología , Células Asesinas Naturales , Ácidos Grasos
3.
Food Sci Nutr ; 11(12): 7900-7909, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38107129

RESUMEN

Restenosis frequently occurs after balloon angioplasty. Percutaneous coronary intervention (PCI)-induced artery damage is a significant part of triggering restenosis of the vascular smooth muscles (VSMC). This study aimed to study how ethanol extract of Phellinus merrillii (EPM) affected balloon injury-induced overgrowth of VSMC, indicating neointima formation. Firstly, our results demonstrated that EPM notably decreased VSMC viability. A fragmentation assay and Annexin V/Propidium Iodide apoptosis assay showed that higher doses of EPM significantly induced the apoptosis of VSMC after 24 h of exposure. Total protein extracted from VSMC treated with EPM in various time and concentration periods was then conducted in Western blotting analysis. Our data demonstrated that EPM substantially elevated the p53, p21, Fas, Bax, p-p38, and active caspase-3 protein expressions. The results indicated that EPM induces VSMC apoptosis via intrinsic and extrinsic pathways. Also, our results demonstrated that EPM effectively attenuated the balloon injury-induced neointima formation. In conclusion, the information offers a mechanism of EPM in inducing the VSMC apoptosis, thus as a potential interference for restenosis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA