Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
BMC Genomics ; 20(1): 900, 2019 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-31775622

RESUMEN

BACKGROUND: Poinsettia is a popular and important ornamental crop, mostly during the Christmas season. Its bract coloration ranges from pink/red to creamy/white shades. Despite its ornamental value, there is a lack of knowledge about the genetics and molecular biology of poinsettia, especially on the mechanisms of color formation. We performed an RNA-Seq analysis in order to shed light on the transcriptome of poinsettia bracts. Moreover, we analyzed the transcriptome differences of red- and white-bracted poinsettia varieties during bract development and coloration. For the assembly of a bract transcriptome, two paired-end cDNA libraries from a red and white poinsettia pair were sequenced with the Illumina technology, and one library from a red-bracted variety was used for PacBio sequencing. Both short and long reads were assembled using a hybrid de novo strategy. Samples of red- and white-bracted poinsettias were sequenced and comparatively analyzed in three color developmental stages in order to understand the mechanisms of color formation and accumulation in the species. RESULTS: The final transcriptome contains 288,524 contigs, with 33% showing confident protein annotation against the TAIR10 database. The BUSCO pipeline, which is based on near-universal orthologous gene groups, was applied to assess the transcriptome completeness. From a total of 1440 BUSCO groups searched, 77% were categorized as complete (41% as single-copy and 36% as duplicated), 10% as fragmented and 13% as missing BUSCOs. The gene expression comparison between red and white varieties of poinsettia showed a differential regulation of the flavonoid biosynthesis pathway only at particular stages of bract development. An initial impairment of the flavonoid pathway early in the color accumulation process for the white poinsettia variety was observed, but these differences were no longer present in the subsequent stages of bract development. Nonetheless, GSTF11 and UGT79B10 showed a lower expression in the last stage of bract development for the white variety and, therefore, are potential candidates for further studies on poinsettia coloration. CONCLUSIONS: In summary, this transcriptome analysis provides a valuable foundation for further studies on poinsettia, such as plant breeding and genetics, and highlights crucial information on the molecular mechanism of color formation.


Asunto(s)
Euphorbia/genética , Perfilación de la Expresión Génica , Transcriptoma , Biología Computacional/métodos , Regulación de la Expresión Génica de las Plantas , Hibridación Genética , Anotación de Secuencia Molecular , Reproducibilidad de los Resultados
2.
Plant Physiol Biochem ; 159: 193-201, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33385702

RESUMEN

We investigated the bi-colored dahlia cultivar 'Seattle', which exhibits bright yellow petals with white tips, for its potential use as a model system for studies of the anthochlor biosynthesis. The yellow base contained high amounts of the 6'-deoxychalcones and the structurally related 4-deoxyaurones, as well as flavones. In contrast, only traces of anthochlors and flavones were detected in the white tips. No anthocyanins, flavonols, flavanones or dihydroflavonols were found in the petals. Gene expression studies indicated that the absence of anthocyanins in the petals is caused by a lack of flavanone 3-hydroxylase (FHT) expression, which is accompanied by a lack of expression of the bHLH transcription factor IVS. Expression of other genes involved in anthocyanidin biosynthesis such as dihydroflavonol 4-reductase (DFR) and anthocyanidin synthase (ANS) was not affected. The yellow and white petal parts showed significant differences in the expression of chalcone synthase 2 (CHS2), which is sufficient to explain the absence of yellow pigments in the white tips. Transcriptomes of both petal parts were de novo assembled and three candidate genes for chalcone reductase (CHR) were identified. None of them showed a significantly higher expression in the yellow base compared to the white tips. In summary, it was shown that the bicolouration is most likely caused by a bottleneck in chalcone formation in the white tip. The relative prevalence of flavones compared to the anthochlors in the white tips could be an indication for the presence of a so far unknown differentially expressed CHR.


Asunto(s)
Dahlia , Regulación de la Expresión Génica de las Plantas , Modelos Biológicos , Pigmentos Biológicos , Antocianinas/genética , Dahlia/genética , Dahlia/metabolismo , Flores/química , Flores/genética , Flores/metabolismo , Genes de Plantas/genética , Pigmentos Biológicos/biosíntesis
3.
Phytochemistry ; 156: 224-233, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30336442

RESUMEN

In the plant kingdom beta-glucosidases (BGLUs) of the glycosidase hydrolase family 1 have essential function in primary metabolism and are particularly employed in secondary metabolism. They are essential for activation in two-component defence systems based on stabilisation of reactive compounds by glycosylation. Based on de novo assembly we isolated and functionally characterised BGLUs expressed in leaves of Lamium galeobdolon (LgGLUs). LgGLU1 could be assigned to hydrolysis of the benzoxazinoid GDIBOA (2,4-dihydroxy-1,4-benzoxazin-3-one glucoside). Within the Lamiaceae L. galeobdolon is distinguished by the presence GDIBOA in addition to the more common iridoid harpagide. Although LgGLU1 proved to be promiscuous with respect to accepted substrates, harpagide hydrolysis was not detected. Benzoxazinoids are characteristic defence compounds of the Poales but are also found in some unrelated dicots. The benzoxazinoid specific BGLUs have recently been identified for the grasses maize, wheat, rye and the Ranunculaceae Consolida orientalis. All enzymes share a general substrate ambiguity but differ in detailed substrate pattern. The isolation of the second dicot GDIBOA glucosidase LgGLU1 allowed it to analyse the phylogenetic relation of the distinct BGLUs also within dicots. The data revealed long periods of independent sequence evolution before speciation.


Asunto(s)
Benzoxazinas/metabolismo , Celulasas/metabolismo , Lamiaceae/enzimología , Benzoxazinas/química , Celulasas/aislamiento & purificación , Glicosilación , Lamiaceae/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA