Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 98
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Malar J ; 23(1): 71, 2024 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-38461239

RESUMEN

BACKGROUND: Therapeutic efficacy studies (TESs) and detection of molecular markers of drug resistance are recommended by the World Health Organization (WHO) to monitor the efficacy of artemisinin-based combination therapy (ACT). This study assessed the trends of molecular markers of artemisinin resistance and/or reduced susceptibility to lumefantrine using samples collected in TES conducted in Mainland Tanzania from 2016 to 2021. METHODS: A total of 2,015 samples were collected during TES of artemether-lumefantrine at eight sentinel sites (in Kigoma, Mbeya, Morogoro, Mtwara, Mwanza, Pwani, Tabora, and Tanga regions) between 2016 and 2021. Photo-induced electron transfer polymerase chain reaction (PET-PCR) was used to confirm presence of malaria parasites before capillary sequencing, which targeted two genes: Plasmodium falciparum kelch 13 propeller domain (k13) and P. falciparum multidrug resistance 1 (pfmdr1). RESULTS: Sequencing success was ≥ 87.8%, and 1,724/1,769 (97.5%) k13 wild-type samples were detected. Thirty-seven (2.1%) samples had synonymous mutations and only eight (0.4%) had non-synonymous mutations in the k13 gene; seven of these were not validated by the WHO as molecular markers of resistance. One sample from Morogoro in 2020 had a k13 R622I mutation, which is a validated marker of artemisinin partial resistance. For pfmdr1, all except two samples carried N86 (wild-type), while mutations at Y184F increased from 33.9% in 2016 to about 60.5% in 2021, and only four samples (0.2%) had D1246Y mutations. pfmdr1 haplotypes were reported in 1,711 samples, with 985 (57.6%) NYD, 720 (42.1%) NFD, and six (0.4%) carrying minor haplotypes (three with NYY, 0.2%; YFD in two, 0.1%; and NFY in one sample, 0.1%). Between 2016 and 2021, NYD decreased from 66.1% to 45.2%, while NFD increased from 38.5% to 54.7%. CONCLUSION: This is the first report of the R622I (k13 validated mutation) in Tanzania. N86 and D1246 were nearly fixed, while increases in Y184F mutations and NFD haplotype were observed between 2016 and 2021. Despite the reports of artemisinin partial resistance in Rwanda and Uganda, this study did not report any other validated mutations in these study sites in Tanzania apart from R622I suggesting that intensified surveillance is urgently needed to monitor trends of drug resistance markers and their impact on the performance of ACT.


Asunto(s)
Antimaláricos , Artemisininas , Carubicina/análogos & derivados , Malaria Falciparum , Humanos , Lumefantrina/farmacología , Lumefantrina/uso terapéutico , Plasmodium falciparum/genética , Antimaláricos/farmacología , Antimaláricos/uso terapéutico , Tanzanía , Artemisininas/farmacología , Artemisininas/uso terapéutico , Arteméter/uso terapéutico , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/genética , Combinación Arteméter y Lumefantrina/farmacología , Combinación Arteméter y Lumefantrina/uso terapéutico , Malaria Falciparum/epidemiología , Biomarcadores , Resistencia a Medicamentos/genética , Proteínas Protozoarias/genética , Proteínas Protozoarias/uso terapéutico
2.
J Infect Dis ; 226(4): 696-707, 2022 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-35811308

RESUMEN

BACKGROUND: Screen-and-treat strategies with sensitive diagnostic tests may reduce malaria-associated adverse pregnancy outcomes. We conducted a diagnostic accuracy study to evaluate new point-of-care tests to screen pregnant women for malaria at their first antenatal visit in western Kenya. METHODS: Consecutively women were tested for Plasmodium infection by expert microscopy, conventional rapid diagnostic test (cRDT), ultra sensitive RDT (usRDT), and loop-mediated isothermal amplification (LAMP). Photoinduced electron-transfer polymerase chain reaction (PET-PCR) served as the reference standard. Diagnostic performance was calculated and modelled at low parasite densities. RESULTS: Between May and September 2018, 172 of 482 screened participants (35.7%) were PET-PCR positive. Relative to PET-PCR, expert microscopy was least sensitive (40.1%; 95% confidence interval [CI], 32.7%-47.9%), followed by cRDT (49.4%; 95% CI, 41.7%-57.1), usRDT (54.7%; 95% CI, 46.9%-62.2%), and LAMP (68.6%; 95% CI, 61.1%-75.5%). Test sensitivities were comparable in febrile women (n = 90). Among afebrile women (n = 392), the geometric-mean parasite density was 29 parasites/µL and LAMP (sensitivity = 61.9%) and usRDT (43.2%) detected 1.74 (95% CI, 1.31-2.30) and 1.21 (95% CI, 88-2.21) more infections than cRDT (35.6%). Per our model, tests performed similarly at densities >200 parasites/µL. At 50 parasites/µL, the sensitivities were 45%, 56%, 62%, and 74% with expert microscopy, cRDT, usRDT, and LAMP, respectively. CONCLUSIONS: This first-generation usRDT provided moderate improvement in detecting low-density infections in afebrile pregnant women compared to cRDTs.


Asunto(s)
Malaria Falciparum , Malaria , Pruebas Diagnósticas de Rutina , Femenino , Humanos , Kenia , Malaria/diagnóstico , Malaria Falciparum/diagnóstico , Técnicas de Diagnóstico Molecular , Técnicas de Amplificación de Ácido Nucleico , Plasmodium falciparum/genética , Embarazo , Mujeres Embarazadas , Sensibilidad y Especificidad
3.
Emerg Infect Dis ; 28(10): 2043-2050, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36148905

RESUMEN

Deletions of pfhrp2 and paralogue pfhrp3 (pfhrp2/3) genes threaten Plasmodium falciparum diagnosis by rapid diagnostic test. We examined 1,002 samples from suspected malaria patients in Djibouti City, Djibouti, to investigate pfhrp2/3 deletions. We performed assays for Plasmodium antigen carriage, pfhrp2/3 genotyping, and sequencing for 7 neutral microsatellites to assess relatedness. By PCR assay, 311 (31.0%) samples tested positive for P. falciparum infection, and 296 (95.2%) were successfully genotyped; 37 (12.5%) samples were pfhrp2+/pfhrp3+, 51 (17.2%) were pfhrp2+/pfhrp3-, 5 (1.7%) were pfhrp2-/pfhrp3+, and 203 (68.6%) were pfhrp2-/pfhrp3-. Histidine-rich protein 2/3 antigen concentrations were reduced with corresponding gene deletions. Djibouti P. falciparum is closely related to Ethiopia and Eritrea parasites (pairwise GST 0.68 [Ethiopia] and 0.77 [Eritrea]). P. falciparum with deletions in pfhrp2/3 genes were highly prevalent in Djibouti City in 2019-2020; they appear to have arisen de novo within the Horn of Africa and have not been imported.


Asunto(s)
Malaria Falciparum , Plasmodium falciparum , Antígenos de Protozoos/genética , Pruebas Diagnósticas de Rutina , Djibouti/epidemiología , Etiopía , Eliminación de Gen , Histidina/genética , Humanos , Malaria Falciparum/diagnóstico , Malaria Falciparum/epidemiología , Plasmodium falciparum/genética , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo
4.
Malar J ; 21(1): 306, 2022 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-36307852

RESUMEN

BACKGROUND: Resistance to anti-malarial drugs is associated with polymorphisms in target genes and surveillance for these molecular markers is important to detect the emergence of mutations associated with drug resistance and signal recovering sensitivity to anti-malarials previously used. METHODS: The presence of polymorphisms in genes associated with Plasmodium falciparum resistance to chloroquine and sulfadoxine-pyrimethamine was evaluated by Sanger sequencing, in 85 P. falciparum day of enrollment samples from a therapeutic efficacy study of artemether-lumefantrine conducted in 2018-2019 in Quibdo, Colombia. Samples were genotyped to assess mutations in pfcrt (codons 72-76), pfdhfr (codons 51, 59, 108, and 164), and pfdhps genes (codons 436, 437, 540, and 581). Further, the genetic diversity of infections using seven neutral microsatellites (NMSs) (C2M34, C3M69, Poly α, TA1, TA109, 2490, and PfPK2) was assessed. RESULTS: All isolates carried mutant alleles for pfcrt (K76T and N75E), and for pfdhfr (N51I and S108N), while for pfdhps, mutations were observed only for codon A437G (32/73, 43.8%). Fifty samples (58.8%) showed a complete neutral microsatellites (NMS) profile. The low mean number of alleles (2 ± 0.57) per locus and mean expected heterozygosity (0.17 ± 0.03) showed a reduced genetic diversity. NMS multilocus genotypes (MMG) were built and nine MMG were identified. CONCLUSIONS: Overall, these findings confirm the fixation of chloroquine and pyrimethamine-resistant alleles already described in the literature, implying that these drugs are not currently appropriate for use in Colombia. In contrast, mutations in the pfdhps gene were only observed at codon 437, an indication that full resistance to sulfadoxine has not been achieved in Choco. MMGs found matched the clonal lineage E variant 1 previously reported in northwestern Colombia.


Asunto(s)
Antimaláricos , Malaria Falciparum , Humanos , Sulfadoxina/farmacología , Sulfadoxina/uso terapéutico , Pirimetamina/farmacología , Pirimetamina/uso terapéutico , Antimaláricos/farmacología , Antimaláricos/uso terapéutico , Plasmodium falciparum , Cloroquina/farmacología , Cloroquina/uso terapéutico , Colombia , Malaria Falciparum/epidemiología , Arteméter/uso terapéutico , Combinación Arteméter y Lumefantrina/uso terapéutico , Combinación de Medicamentos , Resistencia a Medicamentos/genética , Polimorfismo Genético , Codón
5.
Emerg Infect Dis ; 27(7): 1902-1908, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34152946

RESUMEN

The spread of drug resistance to antimalarial treatments poses a serious public health risk globally. To combat this risk, molecular surveillance of drug resistance is imperative. We report the prevalence of mutations in the Plasmodium falciparum kelch 13 propeller domain associated with partial artemisinin resistance, which we determined by using Sanger sequencing samples from patients enrolled in therapeutic efficacy studies from 9 sub-Saharan countries during 2014-2018. Of the 2,865 samples successfully sequenced before treatment (day of enrollment) and on the day of treatment failure, 29 (1.0%) samples contained 11 unique nonsynonymous mutations and 83 (2.9%) samples contained 27 unique synonymous mutations. Two samples from Kenya contained the S522C mutation, which has been associated with delayed parasite clearance; however, no samples contained validated or candidate artemisinin-resistance mutations.


Asunto(s)
Antimaláricos , Malaria Falciparum , Antimaláricos/uso terapéutico , Resistencia a Medicamentos , Humanos , Kenia , Malaria Falciparum/tratamiento farmacológico , Mutación , Plasmodium falciparum , Proteínas Protozoarias/genética
6.
Artículo en Inglés | MEDLINE | ID: mdl-33168604

RESUMEN

Biennial therapeutic efficacy monitoring is a crucial activity for ensuring the efficacy of currently used artemisinin-based combination therapy in Angola. Children with acute uncomplicated Plasmodium falciparum infection in sentinel sites in the Benguela, Zaire, and Lunda Sul Provinces were treated with artemether-lumefantrine (AL) or artesunate-amodiaquine (ASAQ) and monitored for 28 days to assess clinical and parasitological responses. Molecular correction was performed using seven microsatellite markers. Samples from treatment failures were genotyped for the pfk13, pfcrt, and pfmdr1 genes. Day 3 clearance rates were ≥95% in all arms. Uncorrected day 28 Kaplan-Meier efficacy estimates ranged from 84.2 to 90.1% for the AL arms and 84.7 to 100% for the ASAQ arms. Corrected day 28 estimates were 87.6% (95% confidence interval [CI], 81 to 95%) for the AL arm in Lunda Sul, 92.2% (95% CI, 87 to 98%) for AL in Zaire, 95.6% (95% CI, 91 to 100%) for ASAQ in Zaire, 98.4% (95% CI, 96 to 100%) for AL in Benguela, and 100% for ASAQ in Benguela and Lunda Sul. All 103 analyzed samples had wild-type pfk13 sequences. The 76T pfcrt allele was found in most (92%; 11/12) ASAQ late-failure samples but in only 16% (4/25) of AL failure samples. The N86 pfmdr1 allele was found in 97% (34/35) of treatment failures. The AL efficacy in Lunda Sul was below the 90% World Health Organization threshold, the third time in four rounds that this threshold was crossed for an AL arm in Angola. In contrast, the observed ASAQ efficacy has not been below 95% to date in Angola, including this latest round.


Asunto(s)
Antimaláricos , Malaria Falciparum , Amodiaquina/uso terapéutico , Angola , Antimaláricos/uso terapéutico , Arteméter/uso terapéutico , Combinación Arteméter y Lumefantrina , Niño , República Democrática del Congo , Combinación de Medicamentos , Etanolaminas/uso terapéutico , Humanos , Lactante , Malaria Falciparum/tratamiento farmacológico , Plasmodium falciparum/genética
7.
Malar J ; 20(1): 72, 2021 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-33546703

RESUMEN

BACKGROUND: In 2004, in response to high levels of treatment failure associated with sulfadoxine-pyrimethamine (SP) resistance, Benin changed its first-line malaria treatment from SP to artemisinin-based combination therapy for treatment of uncomplicated Plasmodium falciparum malaria. Resistance to SP is conferred by accumulation of single nucleotide polymorphisms (SNPs) in P. falciparum genes involved in folate metabolism, dihydrofolate reductase (Pfdhfr) and dihydropteroate synthase (Pfdhps), targeted by pyrimethamine and sulfadoxine, respectively. Because SP is still used for intermittent preventive treatment in pregnant women (IPTp) and seasonal malaria chemoprevention (SMCP) in Benin, the prevalence of Pfdhfr and Pfdhps SNPs in P. falciparum isolates collected in 2017 were investigated. METHODS: This study was carried out in two sites where the transmission of P. falciparum malaria is hyper-endemic: Klouékanmey and Djougou. Blood samples were collected from 178 febrile children 6-59 months old with confirmed uncomplicated P. falciparum malaria and were genotyped for SNPs associated with SP resistance. RESULTS: The Pfdhfr triple mutant IRN (N51I, C59R, and S108N) was the most prevalent (84.6%) haplotype and was commonly found with the Pfdhps single mutant A437G (50.5%) or with the Pfdhps double mutant S436A and A437G (33.7%). The quintuple mutant, Pfdhfr IRN/Pfdhps GE (A437G and K540E), was rarely observed (0.8%). The A581G and A613S mutant alleles were found in 2.6 and 3.9% of isolates, respectively. Six isolates (3.9%) were shown to harbour a mutation at codon I431V, recently identified in West African parasites. CONCLUSIONS: This study showed that Pfdhfr triple IRN mutants are near fixation in this population and that the highly sulfadoxine-resistant Pfdhps alleles are not widespread in Benin. These data support the continued use of SP for chemoprevention in these study sites, which should be complemented by periodic nationwide molecular surveillance to detect emergence of resistant genotypes.


Asunto(s)
Antimaláricos/farmacología , Dihidropteroato Sintasa/genética , Resistencia a Medicamentos/genética , Plasmodium falciparum/genética , Sulfadoxina/farmacología , Alelos , Benin/epidemiología , Preescolar , Dihidropteroato Sintasa/metabolismo , Combinación de Medicamentos , Femenino , Humanos , Lactante , Malaria Falciparum/epidemiología , Masculino , Plasmodium falciparum/enzimología , Prevalencia , Pirimetamina/farmacología
8.
Malar J ; 20(1): 398, 2021 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-34641867

RESUMEN

BACKGROUND: Due to the threat of emerging anti-malarial resistance, the World Health Organization recommends incorporating surveillance for molecular markers of anti-malarial resistance into routine therapeutic efficacy studies (TESs). In 2018, a TES of artemether-lumefantrine (AL) and artesunate-amodiaquine (ASAQ) was conducted in Mozambique, and the prevalence of polymorphisms in the pfk13, pfcrt, and pfmdr1 genes associated with drug resistance was investigated. METHODS: Children aged 6-59 months were enrolled in four study sites. Blood was collected and dried on filter paper from participants who developed fever within 28 days of initial malaria treatment. All samples were first screened for Plasmodium falciparum using a multiplex real-time PCR assay, and polymorphisms in the pfk13, pfcrt, and pfmdr1 genes were investigated by Sanger sequencing. RESULTS: No pfk13 mutations, associated with artemisinin partial resistance, were observed. The only pfcrt haplotype observed was the wild type CVMNK (codons 72-76), associated with chloroquine sensitivity. Polymorphisms in pfmdr1 were only observed at codon 184, with the mutant 184F in 43/109 (39.4%) of the samples, wild type Y184 in 42/109 (38.5%), and mixed 184F/Y in 24/109 (22.0%). All samples possessed N86 and D1246 at these two codons. CONCLUSION: In 2018, no markers of artemisinin resistance were documented. Molecular surveillance should continue to monitor the prevalence of these markers to inform decisions on malaria treatment in Mozambique.


Asunto(s)
Antimaláricos/uso terapéutico , Artemisininas/uso terapéutico , Resistencia a Medicamentos/genética , Plasmodium falciparum/efectos de los fármacos , Plasmodium falciparum/genética , Polimorfismo Genético/genética , Antimaláricos/farmacología , Artemisininas/farmacología , Preescolar , Quimioterapia Combinada , Femenino , Marcadores Genéticos , Humanos , Lactante , Masculino , Mozambique , Plasmodium falciparum/aislamiento & purificación
9.
Malar J ; 20(1): 432, 2021 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-34732201

RESUMEN

BACKGROUND: Since 2005, artemisinin-based combination therapy (ACT) has been recommended to treat uncomplicated falciparum malaria in Madagascar. Artesunate-amodiaquine (ASAQ) and artemether-lumefantrine (AL) are the first- and second-line treatments, respectively. A therapeutic efficacy study was conducted to assess ACT efficacy and molecular markers of anti-malarial resistance. METHODS: Children aged six months to 14 years with uncomplicated falciparum malaria and a parasitaemia of 1000-100,000 parasites/µl determined by microscopy were enrolled from May-September 2018 in a 28-day in vivo trial using the 2009 World Health Organization protocol for monitoring anti-malarial efficacy. Participants from two communes, Ankazomborona (tropical, northwest) and Matanga (equatorial, southeast), were randomly assigned to ASAQ or AL arms at their respective sites. PCR correction was achieved by genotyping seven neutral microsatellites in paired pre- and post-treatment samples. Genotyping assays for molecular markers of resistance in the pfk13, pfcrt and pfmdr1 genes were conducted. RESULTS: Of 344 patients enrolled, 167/172 (97%) receiving ASAQ and 168/172 (98%) receiving AL completed the study. For ASAQ, the day-28 cumulative PCR-uncorrected efficacy was 100% (95% CI 100-100) and 95% (95% CI 91-100) for Ankazomborona and Matanga, respectively; for AL, it was 99% (95% CI 97-100) in Ankazomborona and 83% (95% CI 76-92) in Matanga. The day-28 cumulative PCR-corrected efficacy for ASAQ was 100% (95% CI 100-100) and 98% (95% CI 95-100) for Ankazomborona and Matanga, respectively; for AL, it was 100% (95% CI 99-100) in Ankazomborona and 95% (95% CI 91-100) in Matanga. Of 83 successfully sequenced samples for pfk13, no mutation associated with artemisinin resistance was observed. A majority of successfully sequenced samples for pfmdr1 carried either the NFD or NYD haplotypes corresponding to codons 86, 184 and 1246. Of 82 successfully sequenced samples for pfcrt, all were wild type at codons 72-76. CONCLUSION: PCR-corrected analysis indicated that ASAQ and AL have therapeutic efficacies above the 90% WHO acceptable cut-off. No genetic evidence of resistance to artemisinin was observed, which is consistent with the clinical outcome data. However, the most common pfmdr1 haplotypes were NYD and NFD, previously associated with tolerance to lumefantrine.


Asunto(s)
Amodiaquina/uso terapéutico , Antimaláricos/uso terapéutico , Combinación Arteméter y Lumefantrina/uso terapéutico , Artemisininas/uso terapéutico , Malaria Falciparum/tratamiento farmacológico , Adolescente , Niño , Preescolar , ADN Protozoario/genética , ADN Protozoario/aislamiento & purificación , Combinación de Medicamentos , Femenino , Humanos , Lactante , Madagascar/epidemiología , Malaria Falciparum/epidemiología , Masculino , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/genética , Plasmodium falciparum/genética , Reacción en Cadena de la Polimerasa , Polimorfismo Genético , Embarazo , Prevalencia , Recurrencia , Reinfección
10.
Malar J ; 20(1): 390, 2021 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-34600544

RESUMEN

BACKGROUND: Artemisinin-based combination therapy (ACT) has been the recommended first-line treatment for uncomplicated malaria in Mozambique since 2006, with artemether-lumefantrine (AL) and amodiaquine-artesunate (AS-AQ) as the first choice. To assess efficacy of currently used ACT, an in vivo therapeutic efficacy study was conducted. METHODS: The study was conducted in four sentinel sites: Montepuez, Moatize, Mopeia and Massinga. Patients between 6 and 59 months old with uncomplicated Plasmodium falciparum malaria (2000-200,000 parasites/µl) were enrolled between February and September of 2018, assigned to either an AL or AS-AQ treatment arm, and monitored for 28 days. A Bayesian algorithm was applied to differentiate recrudescence from new infection using genotyping data of seven neutral microsatellites. Uncorrected and PCR-corrected efficacy results at day 28 were calculated. RESULTS: Totals of 368 and 273 patients were enrolled in the AL and AS-AQ arms, respectively. Of these, 9.5% (35/368) and 5.1% (14/273) were lost to follow-up in the AL and AS-AQ arms, respectively. There were 48 and 3 recurrent malaria infections (late clinical and late parasitological failures) in the AL and AS-AQ arms, respectively. The day 28 uncorrected efficacy was 85.6% (95% confidence interval (CI) 81.3-89.2%) for AL and 98.8% (95% CI 96.7-99.8%) for AS-AQ, whereas day 28 PCR-corrected efficacy was 97.9% (95% CI 95.6-99.2%) for AL and 99.6% (95% CI 97.9-100%) for AS-AQ. Molecular testing confirmed that 87.4% (42/48) and 33.3% (1/3) of participants with a recurrent malaria infection in the AL and AS-AQ arms were new infections; an expected finding in a high malaria transmission area. Adverse events were documented in less than 2% of participants for both drugs. CONCLUSION: Both AL and AS-AQ have therapeutic efficacies well above the 90% WHO recommended threshold and remain well-tolerated in Mozambique. Routine monitoring of therapeutic efficacy should continue to ensure the treatments remain efficacious. Trial registration Clinicaltrials.gov: NCT04370977.


Asunto(s)
Amodiaquina/uso terapéutico , Antimaláricos/uso terapéutico , Combinación Arteméter y Lumefantrina/uso terapéutico , Artemisininas/uso terapéutico , Malaria Falciparum/tratamiento farmacológico , Amodiaquina/normas , Antimaláricos/normas , Combinación Arteméter y Lumefantrina/normas , Artemisininas/normas , Preescolar , Combinación de Medicamentos , Humanos , Lactante , Mozambique , Parasitemia/tratamiento farmacológico , Seguridad , Resultado del Tratamiento
11.
Malar J ; 20(1): 484, 2021 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-34952573

RESUMEN

BACKGROUND: In Uganda, artemether-lumefantrine (AL) is first-line therapy and dihydroartemisinin-piperaquine (DP) second-line therapy for the treatment of uncomplicated malaria. This study evaluated the efficacy and safety of AL and DP in the management of uncomplicated falciparum malaria and measured the prevalence of molecular markers of resistance in three sentinel sites in Uganda from 2018 to 2019. METHODS: This was a randomized, open-label, phase IV clinical trial. Children aged 6 months to 10 years with uncomplicated falciparum malaria were randomly assigned to treatment with AL or DP and followed for 28 and 42 days, respectively. Genotyping was used to distinguish recrudescence from new infection, and a Bayesian algorithm was used to assign each treatment failure a posterior probability of recrudescence. For monitoring resistance, Pfk13 and Pfmdr1 genes were Sanger sequenced and plasmepsin-2 copy number was assessed by qPCR. RESULTS: There were no early treatment failures. The uncorrected 28-day cumulative efficacy of AL ranged from 41.2 to 71.2% and the PCR-corrected cumulative 28-day efficacy of AL ranged from 87.2 to 94.4%. The uncorrected 28-day cumulative efficacy of DP ranged from 95.8 to 97.9% and the PCR-corrected cumulative 28-day efficacy of DP ranged from 98.9 to 100%. The uncorrected 42-day efficacy of DP ranged from 73.5 to 87.4% and the PCR-corrected 42-day efficacy of DP ranged from 92.1 to 97.5%. There were no reported serious adverse events associated with any of the regimens. No resistance-associated mutations in the Pfk13 gene were found in the successfully sequenced samples. In the AL arm, the NFD haplotype (N86Y, Y184F, D1246Y) was the predominant Pfmdr1 haplotype, present in 78 of 127 (61%) and 76 of 110 (69%) of the day 0 and day of failure samples, respectively. All the day 0 samples in the DP arm had one copy of the plasmepsin-2 gene. CONCLUSIONS: DP remains highly effective and safe for the treatment of uncomplicated malaria in Uganda. Recurrent infections with AL were common. In Busia and Arua, the 95% confidence interval for PCR-corrected AL efficacy fell below 90%. Further efficacy monitoring for AL, including pharmacokinetic studies, is recommended. Trial registration The trail was also registered with the ISRCTN registry with study Trial No. PACTR201811640750761.


Asunto(s)
Antimaláricos/uso terapéutico , Combinación Arteméter y Lumefantrina/uso terapéutico , Artemisininas/uso terapéutico , Resistencia a Medicamentos/genética , Malaria Falciparum/prevención & control , Plasmodium falciparum/genética , Quinolinas/uso terapéutico , Biomarcadores/sangre , Humanos , Plasmodium falciparum/efectos de los fármacos , Uganda
12.
Malar J ; 20(1): 235, 2021 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-34034754

RESUMEN

BACKGROUND: The current first-line treatments for uncomplicated malaria recommended by the National Malaria Control Programme in Mali are artemether-lumefantrine (AL) and artesunate-amodiaquine (ASAQ). From 2015 to 2016, an in vivo study was carried out to assess the clinical and parasitological responses to AL and ASAQ in Sélingué, Mali. METHODS: Children between 6 and 59 months of age with uncomplicated Plasmodium falciparum infection and 2000-200,000 asexual parasites/µL of blood were enrolled, randomly assigned to either AL or ASAQ, and followed up for 42 days. Uncorrected and PCR-corrected efficacy results at days 28 and 42. were calculated. Known markers of resistance in the Pfk13, Pfmdr1, and Pfcrt genes were assessed using Sanger sequencing. RESULTS: A total of 449 patients were enrolled: 225 in the AL group and 224 in the ASAQ group. Uncorrected efficacy at day 28 was 83.4% (95% CI 78.5-88.4%) in the AL arm and 93.1% (95% CI 89.7-96.5%) in the ASAQ arm. The per protocol PCR-corrected efficacy at day 28 was 91.0% (86.0-95.9%) in the AL arm and 97.1% (93.6-100%) in the ASAQ arm. ASAQ was significantly (p < 0.05) better than AL for each of the aforementioned efficacy outcomes. No mutations associated with artemisinin resistance were identified in the Pfk13 gene. Overall, for Pfmdr1, the N86 allele and the NFD haplotype were the most common. The NFD haplotype was significantly more prevalent in the post-treatment than in the pre-treatment isolates in the AL arm (p < 0.01) but not in the ASAQ arm. For Pfcrt, the CVIET haplotype was the most common. CONCLUSIONS: The findings indicate that both AL and ASAQ remain effective for the treatment of uncomplicated malaria in Sélingué, Mali.


Asunto(s)
Amodiaquina/uso terapéutico , Antimaláricos/uso terapéutico , Combinación Arteméter y Lumefantrina/uso terapéutico , Artemisininas/uso terapéutico , Malaria Falciparum/prevención & control , Preescolar , Combinación de Medicamentos , Femenino , Humanos , Lactante , Masculino , Malí
13.
Cell Microbiol ; 21(9): e13042, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31087747

RESUMEN

The vast majority of malaria mortality is attributed to one parasite species: Plasmodium falciparum. Asexual replication of the parasite within the red blood cell is responsible for the pathology of the disease. In Plasmodium, the endoplasmic reticulum (ER) is a central hub for protein folding and trafficking as well as stress response pathways. In this study, we tested the role of an uncharacterised ER protein, PfGRP170, in regulating these key functions by generating conditional mutants. Our data show that PfGRP170 localises to the ER and is essential for asexual growth, specifically required for proper development of schizonts. PfGRP170 is essential for surviving heat shock, suggesting a critical role in cellular stress response. The data demonstrate that PfGRP170 interacts with the Plasmodium orthologue of the ER chaperone, BiP. Finally, we found that loss of PfGRP170 function leads to the activation of the Plasmodium eIF2α kinase, PK4, suggesting a specific role for this protein in this parasite stress response pathway.


Asunto(s)
Retículo Endoplásmico/metabolismo , Chaperonas Moleculares/metabolismo , Plasmodium falciparum/crecimiento & desarrollo , Proteínas Protozoarias/metabolismo , Estrés del Retículo Endoplásmico , Eritrocitos/metabolismo , Eritrocitos/parasitología , Proteínas HSP70 de Choque Térmico/genética , Respuesta al Choque Térmico/genética , Humanos , Espectrometría de Masas , Chaperonas Moleculares/genética , Mutación , Plasmodium falciparum/genética , Plasmodium falciparum/metabolismo , Plasmodium falciparum/patogenicidad , Esquizontes/genética , Esquizontes/metabolismo , eIF-2 Quinasa/genética , eIF-2 Quinasa/metabolismo
14.
Malar J ; 19(1): 289, 2020 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-32792011

RESUMEN

BACKGROUND: Chile is one of the South American countries certified as malaria-free since 1945. However, the recent increase of imported malaria cases and the presence of the vector Anopheles pseudopunctipennis in previously endemic areas in Chile require an active malaria surveillance programme. METHODS: Specimens from 268 suspected malaria cases-all imported-collected between 2015 and 2018 at the Public Health Institute of Chile (ISP), were diagnosed by microscopy and positive cases were included for epidemiological analysis. A photo-induced electron transfer fluorogenic primer real-time PCR (PET-PCR) was used to confirm the presence of malaria parasites in available blood samples. Sanger sequencing of drug resistance molecular markers (pfk13, pfcrt and pfmdr1) and microsatellite (MS) analysis were performed in confirmed Plasmodium falciparum samples and results were related to origin of infection. RESULTS: Out of the 268 suspected cases, 65 were Plasmodium spp. positive by microscopy. A total of 63% of the malaria patients were male and 37% were female; 43/65 of the patients acquired infections in South American endemic countries. Species confirmation of available blood samples by PET-PCR revealed that 15 samples were positive for P. falciparum, 27 for Plasmodium vivax and 4 were mixed infections. The P. falciparum samples sequenced contained four mutant pfcrt genotypes (CVMNT, CVMET, CVIET and SVMNT) and three mutant pfmdr1 genotypes (Y184F/S1034C/N1042D/D1246Y, Y184F/N1042D/D1246Y and Y184F). MS analysis confirmed that all P. falciparum samples presented different haplotypes according to the suspected country of origin. Four patients with P. vivax infection returned to the health facilities due to relapses. CONCLUSION: The timely detection of polymorphisms associated with drug resistance will contribute to understanding if current drug policies in the country are appropriate for treatment of imported malaria cases and provide information about the most frequent resistant genotypes entering Chile.


Asunto(s)
Coinfección/epidemiología , Enfermedades Transmisibles Importadas/epidemiología , Malaria Falciparum/epidemiología , Malaria Vivax/epidemiología , Plasmodium falciparum/fisiología , Plasmodium vivax/fisiología , Adolescente , Adulto , Anciano , Niño , Preescolar , Chile/epidemiología , Coinfección/parasitología , Coinfección/transmisión , Enfermedades Transmisibles Importadas/parasitología , Enfermedades Transmisibles Importadas/transmisión , Resistencia a Medicamentos/genética , Femenino , Humanos , Malaria Falciparum/parasitología , Malaria Falciparum/transmisión , Malaria Vivax/parasitología , Malaria Vivax/transmisión , Masculino , Persona de Mediana Edad , Plasmodium falciparum/efectos de los fármacos , Plasmodium falciparum/genética , Plasmodium vivax/efectos de los fármacos , Plasmodium vivax/genética , Adulto Joven
15.
Malar J ; 19(1): 379, 2020 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-33097045

RESUMEN

BACKGROUND: With increasing interest in eliminating malaria from the Caribbean region, Haiti is one of the two countries on the island of Hispaniola with continued malaria transmission. While the Haitian population remains at risk for malaria, there are a limited number of cases annually, making conventional epidemiological measures such as case incidence and prevalence of potentially limited value for fine-scale resolution of transmission patterns and trends. In this context, genetic signatures may be useful for the identification and characterization of the Plasmodium falciparum parasite population in order to identify foci of transmission, detect outbreaks, and track parasite movement to potentially inform malaria control and elimination strategies. METHODS: This study evaluated the genetic signals based on analysis of 21 single-nucleotide polymorphisms (SNPs) from 462 monogenomic (single-genome) P. falciparum DNA samples extracted from dried blood spots collected from malaria-positive patients reporting to health facilities in three southwestern Haitian departments (Nippes, Grand'Anse, and Sud) in 2016. RESULTS: Assessment of the parasite genetic relatedness revealed evidence of clonal expansion within Nippes and the exchange of parasite lineages between Nippes, Sud, and Grand'Anse. Furthermore, 437 of the 462 samples shared high levels of genetic similarity-at least 20 of 21 SNPS-with at least one other sample in the dataset. CONCLUSIONS: These results revealed patterns of relatedness suggestive of the repeated recombination of a limited number of founding parasite types without significant outcrossing. These genetic signals offer clues to the underlying relatedness of parasite populations and may be useful for the identification of the foci of transmission and tracking of parasite movement in Haiti for malaria elimination.


Asunto(s)
ADN Protozoario/análisis , Plasmodium falciparum/genética , Polimorfismo de Nucleótido Simple , Haití
16.
Malar J ; 19(1): 129, 2020 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-32228615

RESUMEN

BACKGROUND: The World Health Organization (WHO) recommends parasite-based diagnosis of malaria. In recent years, there has been surge in the use of various kinds of nucleic-acid amplification based tests (NAATs) for detection and identification of Plasmodium spp. to support clinical care in high-resource settings and clinical and epidemiological research worldwide. However, these tests are not without challenges, including lack (or limited use) of standards and lack of reproducibility, due in part to variation in protocols amongst laboratories. Therefore, there is a need for rigorous quality control, including a robust external quality assessment (EQA) scheme targeted towards malaria NAATs. To this effect, the WHO Global Malaria Programme worked with the UK National External Quality Assessment Scheme (UK NEQAS) Parasitology and with technical experts to launch a global NAAT EQA scheme in January 2017. METHODS: Panels of NAAT EQA specimens containing five major species of human-infecting Plasmodium at various parasite concentrations and negative samples were created in lyophilized blood (LB) and dried blood spot (DBS) formats. Two distributions per year were sent, containing five LB and five DBS specimens. Samples were tested and validated by six expert referee laboratories prior to distribution. Between 37 and 45 laboratories participated in each distribution and submitted results using the online submission portal of UK NEQAS. Participants were scored based on their laboratory's stated capacity to identify Plasmodium species, and individual laboratory reports were sent which included performance comparison with anonymized peers. RESULTS: Analysis of the first three distributions revealed that the factors that most significantly affected performance were sample format (DBS vs LB), species and parasite density, while laboratory location and the reported methodology used (type of nucleic acid extraction, amplification, or DNA vs RNA target) did not significantly affect performance. Referee laboratories performed better than non-referee laboratories. CONCLUSIONS: Globally, malaria NAAT assays now inform a range of clinical, epidemiological and research investigations. EQA schemes offer a way for laboratories to assess and improve their performance, which is critical to safeguarding the reliability of data and diagnoses especially in situations where various NAAT methodologies and protocols are in use.


Asunto(s)
Pruebas Diagnósticas de Rutina/estadística & datos numéricos , Malaria/diagnóstico , Técnicas de Amplificación de Ácido Nucleico/estadística & datos numéricos , Plasmodium/aislamiento & purificación , Garantía de la Calidad de Atención de Salud/estadística & datos numéricos , Humanos , Control de Calidad , Reproducibilidad de los Resultados , Organización Mundial de la Salud
17.
J Infect Dis ; 219(3): 437-447, 2019 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-30202972

RESUMEN

Background: Detection of Plasmodium antigens provides evidence of malaria infection status and is the basis for most malaria diagnosis. Methods: We developed a sensitive bead-based multiplex assay for laboratory use, which simultaneously detects pan-Plasmodium aldolase (pAldo), pan-Plasmodium lactate dehydrogenase (pLDH), and P. falciparum histidine-rich protein 2 (PfHRP2) antigens. The assay was validated against purified recombinant antigens, monospecies malaria infections, and noninfected blood samples. To test against samples collected in an endemic setting, Angolan outpatient samples (n = 1267) were assayed. Results: Of 466 Angolan samples positive for at least 1 antigen, the most common antigen profiles were PfHRP2+/pAldo+/pLDH+ (167, 36%), PfHRP2+/pAldo-/pLDH- (163, 35%), and PfHRP2+/pAldo+/pLDH- (129, 28%). Antigen profile was predictive of polymerase chain reaction (PCR) positivity and parasite density. Eight Angolan samples (1.7%) had no or very low PfHRP2 but were positive for 1 or both of the other antigens. PCR analysis confirmed 3 (0.6%) were P. ovale infections and 2 (0.4%) represented P. falciparum parasites lacking Pfhrp2 and/or Pfhrp3. Conclusions: These are the first reports of Pfhrp2/3 deletion mutants in Angola. High-throughput multiplex antigen detection can inexpensively screen for low-density P. falciparum, non-falciparum, and Pfhrp2/3-deleted parasites to provide population-level antigen estimates and identify specimens requiring further molecular characterization.


Asunto(s)
Antígenos de Protozoos/genética , Antígenos de Protozoos/inmunología , Pruebas Inmunológicas , Plasmodium falciparum/genética , Plasmodium falciparum/inmunología , Proteínas Protozoarias/genética , Proteínas Protozoarias/inmunología , Adolescente , Adulto , Angola , Antígenos de Protozoos/sangre , Niño , Preescolar , Fructosa-Bifosfato Aldolasa/inmunología , Eliminación de Gen , Humanos , Lactante , L-Lactato Deshidrogenasa/inmunología , Malaria Falciparum/diagnóstico , Malaria Falciparum/inmunología , Malaria Falciparum/parasitología , Persona de Mediana Edad , Reacción en Cadena de la Polimerasa , Proteínas Protozoarias/sangre , Proteínas Recombinantes , Adulto Joven
18.
Malar J ; 18(1): 98, 2019 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-30909912

RESUMEN

BACKGROUND: Microscopic detection of malaria parasites is the standard method for clinical diagnosis of malaria in Brazil. However, malaria epidemiological surveillance studies specifically aimed at the detection of low-density infection and asymptomatic cases will require more sensitive and field-usable tools. The diagnostic accuracy of the colorimetric malachite green, loop-mediated, isothermal amplification (MG-LAMP) assay was evaluated in remote health posts in Roraima state, Brazil. METHODS: Study participants were prospectively enrolled from health posts (healthcare-seeking patients) and from nearby villages (healthy participants) in three different study sites. The MG-LAMP assay and microscopy were performed in the health posts. Two independent readers scored the MG-LAMP tests as positive (blue/green) or negative (clear). Sensitivity and specificity of local microscopy and MG-LAMP were calculated using results of PET-PCR as a reference. RESULTS: A total of 91 participants were enrolled. There was 100% agreement between the two MG-LAMP readers (Kappa = 1). The overall sensitivity and specificity of MG-LAMP were 90.0% (95% confidence interval (CI) 76.34-97.21%) and 94% (95% CI 83.76-98.77%), respectively. The sensitivity and specificity of local microscopy were 83% (95% CI 67.22-92.66%) and 100% (95% CI 93.02-100.00%), respectively. PET-PCR detected six mixed infections (infection with both Plasmodium falciparum and Plasmodium vivax); two of these were also detected by MG-LAMP and one by microscopy. Microscopy did not detect any Plasmodium infection in the 26 healthy participants; MG-LAMP detected Plasmodium in five of these and PET-PCR assay detected infection in three. Overall, performing the MG-LAMP in this setting did not present any particular challenges. CONCLUSION: MG-LAMP is a sensitive and specific assay that may be useful for the detection of malaria parasites in remote healthcare settings. These findings suggest that it is possible to implement simple molecular tests in facilities with limited resources.


Asunto(s)
Malaria Falciparum/diagnóstico , Malaria Vivax/diagnóstico , Técnicas de Amplificación de Ácido Nucleico/métodos , Plasmodium falciparum/aislamiento & purificación , Plasmodium vivax/aislamiento & purificación , Vigilancia de la Población/métodos , Colorantes de Rosanilina/química , Brasil , Humanos , Técnicas de Amplificación de Ácido Nucleico/instrumentación , Sensibilidad y Especificidad
19.
Malar J ; 18(1): 88, 2019 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-30898164

RESUMEN

BACKGROUND: The World Health Organization recommends regular therapeutic efficacy studies (TES) to monitor the performance of first and second-line anti-malarials. In 2016, efficacy and safety of artemether-lumefantrine (AL) for the treatment of uncomplicated falciparum malaria were assessed through a TES conducted between April and October 2016 at four sentinel sites of Kibaha, Mkuzi, Mlimba, and Ujiji in Tanzania. The study also assessed molecular markers of artemisinin and lumefantrine (partner drug) resistance. METHODS: Eligible patients were enrolled at the four sites, treated with standard doses of AL, and monitored for 28 days with clinical and laboratory assessments. The main outcomes were PCR corrected cure rates, day 3 positivity rates, safety of AL, and prevalence of single nucleotide polymorphisms in Plasmodium falciparum kelch 13 (Pfk13) (codon positions: 440-600) and P. falciparum multi-drug resistance 1 (Pfmdr1) genes (codons: N86Y, Y184F and D1246Y), markers of artemisinin and lumefantrine resistance, respectively. RESULTS: Of 344 patients enrolled, three withdrew, six were lost to follow-up; and results were analysed for 335 (97.4%) patients. Two patients had treatment failure (one early treatment failure and one recrudescent infection) after PCR correction, yielding an adequate clinical and parasitological response of > 98%. Day 3 positivity rates ranged from 0 to 5.7%. Common adverse events included cough, abdominal pain, vomiting, and diarrhoea. Two patients had serious adverse events; one died after the first dose of AL and another required hospitalization after the second dose of AL (on day 0) but recovered completely. Of 344 samples collected at enrolment (day 0), 92.7% and 100% were successfully sequenced for Pfk13 and Pfmdr1 genes, respectively. Six (1.9%) had non-synonymous mutations in Pfk13, none of which had been previously associated with artemisinin resistance. For Pfmdr1, the NFD haplotype (codons N86, 184F and D1246) was detected in 134 (39.0%) samples; ranging from 33.0% in Mlimba to 45.5% at Mkuzi. The difference among the four sites was not significant (p = 0.578). All samples had a single copy of the Pfmdr1 gene. CONCLUSION: The study indicated high efficacy of AL and the safety profile was consistent with previous reports. There were no known artemisinin-resistance Pfk13 mutations, but there was a high prevalence of a Pfmdr1 haplotype associated with reduced sensitivity to lumefantrine (but no reduced efficacy was observed in the subjects). Continued TES and monitoring of markers of resistance to artemisinin and partner drugs is critical for early detection of resistant parasites and to inform evidence-based malaria treatment policies. Trial Registration ClinicalTrials.gov NCT03387631.


Asunto(s)
Antimaláricos/efectos adversos , Combinación Arteméter y Lumefantrina/efectos adversos , Resistencia a Medicamentos/genética , Malaria/prevención & control , Polimorfismo de Nucleótido Simple/efectos de los fármacos , Proteínas Protozoarias/genética , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/genética , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/metabolismo , Proteínas Protozoarias/metabolismo , Tanzanía
20.
J Infect Dis ; 217(5): 685-692, 2018 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-29220497

RESUMEN

Background: The response to antimalarial treatment is assessed using serial microscopy. New techniques for accurate measurement of the Plasmodium falciparum histidine-rich protein 2 (HRP2) antigen have allowed for monitoring of the antigen concentration over time, offering a potential alternative for assessing treatment response. Methods: Posttreatment HRP2 concentrations were measured in samples obtained longitudinally from 537 individuals with P. falciparum malaria who were participating in efficacy trials in Angola, Tanzania, and Senegal. The HRP2 half-life was estimated using a first-order kinetics clearance model. The association between the HRP2 concentration 3 days after treatment and recrudescence of infection was assessed. Results: Despite substantial variation in HRP2 concentrations among participants at baseline, concentrations consistently showed a first-order exponential decline. The median half-life of HRP2 was estimated to be 4.5 days (interquartile range [IQR], 3.3-6.6 days) in Angola, 4.7 days (IQR, 4.0-5.9 days) in Tanzania, and 3.0 days (IQR, 2.1-4.5 days) in Senegal. The day 3 HRP2 concentration was predictive of eventual recrudescence, with an area under the receiver operating characteristic curve of 0.86 (95% confidence interval, .73-.99). Conclusions: Consistent HRP2 clearance dynamics following successful antimalarial treatment imply a common underlying mechanism of biological clearance. Patients who ultimately did not respond to treatment did not exhibit this same pattern of clearance, even in the absence of other indications of inadequate response to treatment.


Asunto(s)
Antígenos de Protozoos/sangre , Antimaláricos/administración & dosificación , Monitoreo de Drogas , Malaria Falciparum/tratamiento farmacológico , Proteínas Protozoarias/sangre , Adolescente , Angola , Niño , Preescolar , Femenino , Humanos , Lactante , Estudios Longitudinales , Masculino , Senegal , Tanzanía , Factores de Tiempo , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA