Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Virol ; 90(16): 7339-7349, 2016 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-27252533

RESUMEN

UNLABELLED: The human cytomegalovirus (HCMV) major immediate early (MIE) gene is essential for viral replication. The most abundant products encoded by the MIE gene include IE1 and IE2. Genes of IE1 and IE2 share the MIE promoter (MIEP), the first 3 exons, and the first 2 introns. IE1 is expressed earlier than IE2 after CMV infection or MIE gene transfection. In this study, we identified 2 polypyrimidine (Py) tracts in intron 4 (between exons 4 and 5) that are responsible for transcriptional switching from IE1 to IE2. The first Py is important and the second one is essential for the splicing and expression of IE2. In searching for the mechanisms of MIE gene switching from IE1 to IE2, we found that the second Py was required for the IE2's fourth intron to bind to a splicing factor such as U2AF65, as determined by an RNA electrophoretic mobility shift assay and a chromatin immunoprecipitation (ChIP) assay, while the first Py enhanced the binding of U2AF65 with the intron. An HCMV BACmid with the second Py mutated failed to produce any virus, while the HCMV with the first Py mutated replicated with a defective phenotype. Furthermore, we designed a small RNA (scRNAPy) that is complementary to the intron RNA covering the two Pys. The scRNAPy interfered with the interaction of U2AF65 with the intron and repressed the IE2 expression. Therefore, our studies implied that IE2 gene splicing might be an anti-CMV target. IMPORTANCE: CMV is a ubiquitous herpesvirus and a significant cause of disease and death in the immunocompromised and elderly. Insights into its gene regulation will provide clues in designing anti-CMV strategies. The MIE gene is one of the earliest genes of CMV and is essential for CMV replication. It is known that the MIE gene needs to be spliced to produce more than two proteins; however, how MIE gene splicing is regulated remains elusive. In the present studies, we identified two Pys in intron 4 and found that the first Py is important and the second is required for the splicing and expression of IE2. We further investigated the mechanisms of gene switching from IE1 to IE2 and found that the two Pys are responsible for U2AF65's binding with intron 4. Therefore, the Pys in intron 4 are the cis elements that determine the fate of IE2 splicing. Furthermore, we found that a small RNA that is complementary to intron 4 repressed IE2 expression. Hence, we provide the first piece of evidence for a unique mechanism of MIE gene regulation at the splicing level.


Asunto(s)
Citomegalovirus/fisiología , Regulación Viral de la Expresión Génica , Proteínas Inmediatas-Precoces/metabolismo , Intrones , Transactivadores/metabolismo , Transcripción Genética , Replicación Viral , Citomegalovirus/genética , Ensayo de Cambio de Movilidad Electroforética , Humanos , Proteínas Inmediatas-Precoces/genética , Unión Proteica , Pirimidinas/metabolismo , Factores de Empalme de ARN/metabolismo , Transactivadores/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA