Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Sci Adv ; 9(49): eadi5545, 2023 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-38055815

RESUMEN

Infection response and other immunity-linked genes (ILGs) were first named in Caenorhabditis elegans-based expression after pathogen challenge, but many are also up-regulated when lipid metabolism is perturbed. Why pathogen attack and metabolic changes both increase ILGs is unclear. We find that ILGs are activated when phosphatidylcholine (PC) levels change in membranes of secretory organelles in C. elegans. RNAi targeting of the ADP-ribosylation factor arf-1, which disrupts the Golgi and secretory function, also activates ILGs. Low PC limits ARF-1 function, suggesting a mechanism for ILG activation via lipid metabolism, as part of a membrane stress response acting outside the ER. RNAi of selected ILGs uncovered defects in the secretion of two GFP reporters and the accumulation of a pathogen-responsive complement C1r/C1s, Uegf, Bmp1 (CUB) domain fusion protein. Our data argue that up-regulation of some ILGs is a coordinated response to changes in trafficking and may act to counteract stress on secretory function.


Asunto(s)
Caenorhabditis elegans , GTP Fosfohidrolasas , Animales , GTP Fosfohidrolasas/metabolismo , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Aparato de Golgi/metabolismo , Factor 1 de Ribosilacion-ADP/genética , Factor 1 de Ribosilacion-ADP/metabolismo , Transporte Biológico
2.
Elife ; 122023 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-36756948

RESUMEN

Methylation is a widely occurring modification that requires the methyl donor S-adenosylmethionine (SAM) and acts in regulation of gene expression and other processes. SAM is synthesized from methionine, which is imported or generated through the 1-carbon cycle (1 CC). Alterations in 1 CC function have clear effects on lifespan and stress responses, but the wide distribution of this modification has made identification of specific mechanistic links difficult. Exploiting a dynamic stress-induced transcription model, we find that two SAM synthases in Caenorhabditis elegans, SAMS-1 and SAMS-4, contribute differently to modification of H3K4me3, gene expression and survival. We find that sams-4 enhances H3K4me3 in heat shocked animals lacking sams-1, however, sams-1 cannot compensate for sams-4, which is required to survive heat stress. This suggests that the regulatory functions of SAM depend on its enzymatic source and that provisioning of SAM may be an important regulatory step linking 1 CC function to phenotypes in aging and stress.


Asunto(s)
Histonas , S-Adenosilmetionina , Animales , S-Adenosilmetionina/metabolismo , Histonas/metabolismo , Caenorhabditis elegans/fisiología , Respuesta al Choque Térmico , Expresión Génica
3.
Genetics ; 221(4)2022 07 30.
Artículo en Inglés | MEDLINE | ID: mdl-35587742

RESUMEN

Omics tools provide broad datasets for biological discovery. However, the computational tools for identifying important genes or pathways in RNA-seq, proteomics, or GWAS (Genome-Wide Association Study) data depend on Gene Ontogeny annotations and are biased toward well-described pathways. This limits their utility as poorly annotated genes, which could have novel functions, are often passed over. Recently, we developed an annotation and category enrichment tool for Caenorhabditis elegans genomic data, WormCat, which provides an intuitive visualization output. Unlike Gene Ontogeny-based enrichment tools, which exclude genes with no annotation information, WormCat 2.0 retains these genes as a special UNASSIGNED category. Here, we show that the UNASSIGNED gene category enrichment exhibits tissue-specific expression patterns and can include genes with biological functions identified in published datasets. Poorly annotated genes are often considered to be potentially species-specific and thus, of reduced interest to the biomedical community. Instead, we find that around 3% of the UNASSIGNED genes have human orthologs, including some linked to human diseases. These human orthologs themselves have little annotation information. A recently developed method that incorporates lineage relationships (abSENSE) indicates that the failure of BLAST to detect homology explains the apparent lineage specificity for many UNASSIGNED genes. This suggests that a larger subset could be related to human genes. WormCat provides an annotation strategy that allows the association of UNASSIGNED genes with specific phenotypes and known pathways. Building these associations in C. elegans, with its robust genetic tools, provides a path to further functional study and insight into these understudied genes.


Asunto(s)
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Genoma , Estudio de Asociación del Genoma Completo , Humanos , Anotación de Secuencia Molecular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA