Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Nat Rev Mol Cell Biol ; 17(6): 350-63, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27093943

RESUMEN

The information encoded in DNA is influenced by the presence of non-canonical nucleotides, the most frequent of which are ribonucleotides. In this Review, we discuss recent discoveries about ribonucleotide incorporation into DNA during replication by the three major eukaryotic replicases, DNA polymerases α, δ and ε. The presence of ribonucleotides in DNA causes short deletion mutations and may result in the generation of single- and double-strand DNA breaks, leading to genome instability. We describe how these ribonucleotides are removed from DNA through ribonucleotide excision repair and by topoisomerase I. We discuss the biological consequences and the physiological roles of ribonucleotides in DNA, and consider how deficiencies in their removal from DNA may be important in the aetiology of disease.


Asunto(s)
Replicación del ADN , Ribonucleótidos/metabolismo , Animales , ADN/biosíntesis , ADN/genética , Reparación del ADN , Humanos , Polimerizacion
2.
Mol Cell ; 76(3): 371-381.e4, 2019 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-31495565

RESUMEN

Break-induced replication (BIR) is a pathway of homology-directed repair that repairs one-ended DNA breaks, such as those formed at broken replication forks or uncapped telomeres. In contrast to conventional S phase DNA synthesis, BIR proceeds by a migrating D-loop and results in conservative synthesis of the nascent strands. DNA polymerase delta (Pol δ) initiates BIR; however, it is not known whether synthesis of the invading strand switches to a different polymerase or how the complementary strand is synthesized. By using alleles of the replicative DNA polymerases that are permissive for ribonucleotide incorporation, thus generating a signature of their action in the genome that can be identified by hydrolytic end sequencing, we show that Pol δ replicates both the invading and the complementary strand during BIR. In support of this conclusion, we show that depletion of Pol δ from cells reduces BIR, whereas depletion of Pol ε has no effect.


Asunto(s)
Roturas del ADN , ADN Polimerasa III/metabolismo , Replicación del ADN , ADN de Hongos/biosíntesis , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , ADN Ligasa (ATP)/genética , ADN Ligasa (ATP)/metabolismo , ADN Polimerasa I/genética , ADN Polimerasa I/metabolismo , ADN Polimerasa II/genética , ADN Polimerasa II/metabolismo , ADN Polimerasa III/genética , ADN de Hongos/genética , Células HEK293 , Células HeLa , Humanos , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
3.
Nucleic Acids Res ; 50(22): 12844-12855, 2022 12 09.
Artículo en Inglés | MEDLINE | ID: mdl-36533450

RESUMEN

Pif1 family 5' → 3' DNA helicases are important for replication fork progression and genome stability. The budding yeast Saccharomyces cerevisiae encodes two Pif1 family helicases, Rrm3 and Pif1, both of which are multi-functional. Here we describe novel functions for Rrm3 in promoting mutation avoidance during DNA replication. We show that loss of RRM3 results in elevated spontaneous mutations made by DNA polymerases Pols ϵ and δ, which are subject to DNA mismatch repair. The absence of RRM3 also causes higher mutagenesis by the fourth B-family DNA polymerase Pol ζ. By genome-wide analysis, we show that the mutational consequences due to loss of RRM3 vary depending on the genomic locus. Rrm3 promotes the accuracy of DNA replication by Pols ϵ and δ across the genome, and it is particularly important for preventing Pol ζ-dependent mutagenesis at tRNA genes. In addition, mutation avoidance by Rrm3 depends on its helicase activity, and Pif1 serves as a backup for Rrm3 in suppressing mutagenesis. We present evidence that the sole human Pif1 family helicase in human cells likely also promotes replication fidelity, suggesting that a role for Pif1 family helicases in mutation avoidance may be evolutionarily conserved, a possible underlying mechanism for its potential tumor-suppressor function.


Asunto(s)
ADN Helicasas , Replicación del ADN , Humanos , Células Cultivadas , Secuencia Conservada , ADN Helicasas/genética , ADN Helicasas/metabolismo , Replicación del ADN/genética , Mutación , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
4.
Crit Rev Biochem Mol Biol ; 56(1): 109-124, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33461360

RESUMEN

Ribonucleotides are the most abundant non-canonical nucleotides in the genome. Their vast presence and influence over genome biology is becoming increasingly appreciated. Here we review the recent progress made in understanding their genomic presence, incorporation characteristics and usefulness as biomarkers for polymerase enzymology. We also discuss ribonucleotide processing, the genetic consequences of unrepaired ribonucleotides in DNA and evidence supporting the significance of their transient presence in the nuclear genome.


Asunto(s)
Replicación del ADN/genética , ADN/genética , ADN/metabolismo , Ribonucleótidos/genética , Ribonucleótidos/metabolismo , Animales , Biomarcadores/metabolismo , Núcleo Celular/metabolismo , Reparación del ADN/genética , ADN Polimerasa Dirigida por ADN/metabolismo , Genoma Mitocondrial , Inestabilidad Genómica , Humanos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
5.
Nucleic Acids Res ; 49(10): 5623-5636, 2021 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-34019669

RESUMEN

Iron-sulfur clusters (4Fe-4S) exist in many enzymes concerned with DNA replication and repair. The contribution of these clusters to enzymatic activity is not fully understood. We identified the MET18 (MMS19) gene of Saccharomyces cerevisiae as a strong mutator on GC-rich genes. Met18p is required for the efficient insertion of iron-sulfur clusters into various proteins. met18 mutants have an elevated rate of deletions between short flanking repeats, consistent with increased DNA polymerase slippage. This phenotype is very similar to that observed in mutants of POL3 (encoding the catalytic subunit of Pol Î´) that weaken binding of the iron-sulfur cluster. Comparable mutants of POL2 (Pol ϵ) do not elevate deletions. Further support for the conclusion that met18 strains result in impaired DNA synthesis by Pol Î´ are the observations that Pol Î´ isolated from met18 strains has less bound iron and is less processive in vitro than the wild-type holoenzyme.


Asunto(s)
ADN Polimerasa III/metabolismo , Reparación del ADN , Replicación del ADN , Proteínas Hierro-Azufre/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Factores de Transcripción/metabolismo , Dominio Catalítico , ADN Polimerasa Dirigida por ADN/metabolismo , Unión Proteica
6.
Mol Cell ; 49(5): 1010-5, 2013 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-23375499

RESUMEN

RNase H2-dependent ribonucleotide excision repair (RER) removes ribonucleotides incorporated during DNA replication. When RER is defective, ribonucleotides in the nascent leading strand of the yeast genome are associated with replication stress and genome instability. Here, we provide evidence that topoisomerase 1 (Top1) initiates an independent form of repair to remove ribonucleotides from genomic DNA. This Top1-dependent process activates the S phase checkpoint. Deleting TOP1 reverses this checkpoint activation and also relieves replication stress and genome instability in RER-defective cells. The results reveal an additional removal pathway for a very common lesion in DNA, and they imply that the "dirty" DNA ends created when Top1 incises ribonucleotides in DNA are responsible for the adverse consequences of ribonucleotides in RNase H2-defective cells.


Asunto(s)
Reparación del ADN , ADN-Topoisomerasas de Tipo I/metabolismo , ADN de Hongos/metabolismo , Ribonucleótidos/metabolismo , ADN-Topoisomerasas de Tipo I/genética , Inestabilidad Genómica , Ribonucleasa H/genética , Ribonucleasa H/metabolismo , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
7.
Mol Cell ; 50(3): 437-43, 2013 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-23603118

RESUMEN

To maintain genome stability, mismatch repair of nuclear DNA replication errors must be directed to the nascent strand, likely by DNA ends and PCNA. Here we show that the efficiency of mismatch repair in Saccharomyces cerevisiae is reduced by inactivating RNase H2, which nicks DNA containing ribonucleotides incorporated during replication. In strains encoding mutator polymerases, this reduction is preferential for repair of mismatches made by leading-strand DNA polymerase ε as compared to lagging-strand DNA polymerase δ. The results suggest that RNase-H2-dependent processing of ribonucleotides transiently present in DNA after replication may direct mismatch repair to the continuously replicated nascent leading strand.


Asunto(s)
Reparación de la Incompatibilidad de ADN , Replicación del ADN/genética , Ribonucleótidos/genética , Ribonucleótidos/metabolismo , ADN Polimerasa II/genética , ADN Polimerasa II/metabolismo , ADN Polimerasa III/genética , ADN Polimerasa III/metabolismo , Inestabilidad Genómica , Ribonucleasa H/genética , Ribonucleasa H/metabolismo , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
8.
Nucleic Acids Res ; 47(8): 3986-3995, 2019 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-30698744

RESUMEN

The four B-family DNA polymerases α, δ, ϵ and ζ cooperate to accurately replicate the eukaryotic nuclear genome. Here, we report that a Saccharomyces cerevisiae strain encoding the pol2-16 mutation that lacks Pol ϵ's polymerase and exonuclease activities has increased dNTP concentrations and an increased mutation rate at the CAN1 locus compared to wild type yeast. About half of this mutagenesis disappears upon deleting the REV3 gene encoding the catalytic subunit of Pol ζ. The remaining, still strong, mutator phenotype is synergistically elevated in an msh6Δ strain and has a mutation spectrum characteristic of mistakes made by Pol δ. The results support a model wherein slow-moving replication forks caused by the lack of Pol ϵ's catalytic domains result in greater involvement of mutagenic DNA synthesis by Pol ζ as well as diminished proofreading by Pol δ during replication.


Asunto(s)
ADN Polimerasa II/genética , ADN de Hongos/genética , ADN Polimerasa Dirigida por ADN/genética , Regulación Fúngica de la Expresión Génica , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Sistemas de Transporte de Aminoácidos Básicos/genética , Sistemas de Transporte de Aminoácidos Básicos/metabolismo , Dominio Catalítico , ADN Polimerasa II/metabolismo , Replicación del ADN , ADN de Hongos/metabolismo , ADN Polimerasa Dirigida por ADN/deficiencia , Eliminación de Gen , Tasa de Mutación , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
9.
Curr Genet ; 66(2): 299-302, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31493018

RESUMEN

Three major eukaryotic DNA polymerases, Polymerases α, δ, and ε (Pols α, δ, and ε), perform the fundamental process of DNA synthesis at the replication fork both accurately and efficiently. In trying to understand the necessity and flexibility of the polymerase usage, we recently reported that budding yeast cells lacking Pol ε exonuclease and polymerase domains (pol2-16) survive, but have severe growth defects, checkpoint activation, increased level of dNTP pools as well as significant increase in the mutation rates. Herein, we suggest new opportunities to distinguish the roles of Pol ε from those of two other eukaryotic B-family DNA polymerases, Pols δ and ζ.


Asunto(s)
Replicación del ADN , ADN Polimerasa Dirigida por ADN/metabolismo , Saccharomycetales/enzimología , Proteínas Fúngicas/metabolismo , Saccharomycetales/genética , Saccharomycetales/metabolismo
10.
11.
Proc Natl Acad Sci U S A ; 114(10): 2663-2668, 2017 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-28223526

RESUMEN

Gene-gene or gene-drug interactions are typically quantified using fitness as a readout because the data are continuous and easily measured in high throughput. However, to what extent fitness captures the range of other phenotypes that show synergistic effects is usually unknown. Using Saccharomyces cerevisiae and focusing on a matrix of DNA repair mutants and genotoxic drugs, we quantify 76 gene-drug interactions based on both mutation rate and fitness and find that these parameters are not connected. Independent of fitness defects, we identified six cases of synthetic hypermutation, where the combined effect of the drug and mutant on mutation rate was greater than predicted. One example occurred when yeast lacking RAD1 were exposed to cisplatin, and we characterized this interaction using whole-genome sequencing. Our sequencing results indicate mutagenesis by cisplatin in rad1Δ cells appeared to depend almost entirely on interstrand cross-links at GpCpN motifs. Interestingly, our data suggest that the following base on the template strand dictates the addition of the mutated base. This result differs from cisplatin mutation signatures in XPF-deficient Caenorhabditis elegans and supports a model in which translesion synthesis polymerases perform a slippage and realignment extension across from the damaged base. Accordingly, DNA polymerase ζ activity was essential for mutagenesis in cisplatin-treated rad1Δ cells. Together these data reveal the potential to gain new mechanistic insights from nonfitness measures of gene-drug interactions and extend the use of mutation accumulation and whole-genome sequencing analysis to define DNA repair mechanisms.


Asunto(s)
Cisplatino/toxicidad , Enzimas Reparadoras del ADN/genética , Endonucleasas/genética , Aptitud Genética/efectos de los fármacos , Mutagénesis/efectos de los fármacos , Proteínas de Saccharomyces cerevisiae/genética , Cisplatino/uso terapéutico , Daño del ADN/efectos de los fármacos , Reparación del ADN/efectos de los fármacos , Replicación del ADN/efectos de los fármacos , ADN Polimerasa Dirigida por ADN/genética , Pruebas de Mutagenicidad , Tasa de Mutación , Saccharomyces cerevisiae/genética , Secuenciación Completa del Genoma
12.
Crit Rev Biochem Mol Biol ; 51(1): 43-52, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26822554

RESUMEN

The eukaryotic nuclear genome is replicated asymmetrically, with the leading strand replicated continuously and the lagging strand replicated as discontinuous Okazaki fragments that are subsequently joined. Both strands are replicated with high fidelity, but the processes used to achieve high fidelity are likely to differ. Here we review recent studies of similarities and differences in the fidelity with which the three major eukaryotic replicases, DNA polymerases α, δ, and ɛ, replicate the leading and lagging strands with high nucleotide selectivity and efficient proofreading. We then relate the asymmetric fidelity at the replication fork to the efficiency of DNA mismatch repair, ribonucleotide excision repair and topoisomerase 1 activity.


Asunto(s)
Replicación del ADN , Inestabilidad Genómica , Disparidad de Par Base , Reparación del ADN , ADN Polimerasa Dirigida por ADN/metabolismo
13.
BMC Genomics ; 19(1): 345, 2018 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-29743009

RESUMEN

BACKGROUND: Identification of mutations from next-generation sequencing data typically requires a balance between sensitivity and accuracy. This is particularly true of DNA insertions and deletions (indels), that can impart significant phenotypic consequences on cells but are harder to call than substitution mutations from whole genome mutation accumulation experiments. To overcome these difficulties, we present muver, a computational framework that integrates established bioinformatics tools with novel analytical methods to generate mutation calls with the extremely low false positive rates and high sensitivity required for accurate mutation rate determination and comparison. RESULTS: Muver uses statistical comparison of ancestral and descendant allelic frequencies to identify variant loci and assigns genotypes with models that include per-sample assessments of sequencing errors by mutation type and repeat context. Muver identifies maximally parsimonious mutation pathways that connect these genotypes, differentiating potential allelic conversion events and delineating ambiguities in mutation location, type, and size. Benchmarking with a human gold standard father-son pair demonstrates muver's sensitivity and low false positive rates. In DNA mismatch repair (MMR) deficient Saccharomyces cerevisiae, muver detects multi-base deletions in homopolymers longer than the replicative polymerase footprint at rates greater than predicted for sequential single-base deletions, implying a novel multi-repeat-unit slippage mechanism. CONCLUSIONS: Benchmarking results demonstrate the high accuracy and sensitivity achieved with muver, particularly for indels, relative to available tools. Applied to an MMR-deficient Saccharomyces cerevisiae system, muver mutation calls facilitate mechanistic insights into DNA replication fidelity.


Asunto(s)
Genoma Fúngico , Acumulación de Mutaciones , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Análisis de Secuencia de ADN/métodos , Programas Informáticos , Biología Computacional , Padre , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Masculino , Tasa de Mutación , Estándares de Referencia
14.
Nucleic Acids Res ; 44(4): 1669-80, 2016 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-26609135

RESUMEN

The absolute and relative concentrations of the four dNTPs are key determinants of DNA replication fidelity, yet the consequences of altered dNTP pools on replication fidelity have not previously been investigated on a genome-wide scale. Here, we use deep sequencing to determine the types, rates and locations of uncorrected replication errors that accumulate in the nuclear genome of a mismatch repair-deficient diploid yeast strain with elevated dCTP and dTTP concentrations. These imbalanced dNTP pools promote replication errors in specific DNA sequence motifs suggesting increased misinsertion and increased mismatch extension at the expense of proofreading. Interestingly, substitution rates are similar for leading and lagging strand replication, but are higher in regions replicated late in S phase. Remarkably, the rate of single base deletions is preferentially increased in coding sequences and in short rather than long mononucleotides runs. Based on DNA sequence motifs, we propose two distinct mechanisms for generating single base deletions in vivo. Collectively, the results indicate that elevated dCTP and dTTP pools increase mismatch formation and decrease error correction across the nuclear genome, and most strongly increases mutation rates in coding and late replicating sequences.


Asunto(s)
Replicación del ADN/genética , Desoxirribonucleótidos/metabolismo , Genoma Fúngico , Saccharomyces cerevisiae/genética , Secuencia de Bases , Ciclo Celular/genética , Reparación de la Incompatibilidad de ADN/genética , Desoxirribonucleótidos/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Mutagénesis/genética , Mutación , Tasa de Mutación
15.
Genome Res ; 24(11): 1751-64, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25217194

RESUMEN

Mutational heterogeneity must be taken into account when reconstructing evolutionary histories, calibrating molecular clocks, and predicting links between genes and disease. Selective pressures and various DNA transactions have been invoked to explain the heterogeneous distribution of genetic variation between species, within populations, and in tissue-specific tumors. To examine relationships between such heterogeneity and variations in leading- and lagging-strand replication fidelity and mismatch repair, we accumulated 40,000 spontaneous mutations in eight diploid yeast strains in the absence of selective pressure. We found that replicase error rates vary by fork direction, coding state, nucleosome proximity, and sequence context. Further, error rates and DNA mismatch repair efficiency both vary by mismatch type, responsible polymerase, replication time, and replication origin proximity. Mutation patterns implicate replication infidelity as one driver of variation in somatic and germline evolution, suggest mechanisms of mutual modulation of genome stability and composition, and predict future observations in specific cancers.


Asunto(s)
Reparación de la Incompatibilidad de ADN , ADN Polimerasa III/genética , ADN Polimerasa II/genética , ADN Polimerasa I/genética , Genoma Fúngico/genética , Proteínas de Saccharomyces cerevisiae/genética , Algoritmos , ADN Polimerasa I/metabolismo , ADN Polimerasa II/metabolismo , ADN Polimerasa III/metabolismo , Replicación del ADN , Evolución Molecular , Variación Genética , Modelos Genéticos , Tasa de Mutación , Nucleosomas/genética , Nucleosomas/metabolismo , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Análisis de Secuencia de ADN
16.
Nucleic Acids Res ; 43(8): 4067-74, 2015 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-25824945

RESUMEN

Mutation rates are used to calibrate molecular clocks and to link genetic variants with human disease. However, mutation rates are not uniform across each eukaryotic genome. Rates for insertion/deletion (indel) mutations have been found to vary widely when examined in vitro and at specific loci in vivo. Here, we report the genome-wide rates of formation and repair of indels made during replication of yeast nuclear DNA. Using over 6000 indels accumulated in four mismatch repair (MMR) defective strains, and statistical corrections for false negatives, we find that indel rates increase by 100 000-fold with increasing homonucleotide run length, representing the greatest effect on replication fidelity of any known genomic parameter. Nonetheless, long genomic homopolymer runs are overrepresented relative to random chance, implying positive selection. Proofreading defects in the replicative polymerases selectively increase indel rates in short repetitive tracts, likely reflecting the distance over which Pols δ and ϵ interact with duplex DNA upstream of the polymerase active site. In contrast, MMR defects hugely increase indel mutagenesis in long repetitive sequences. Because repetitive sequences are not uniformly distributed among genomic functional elements, the quantitatively different consequences on genome-wide repeat sequence instability conferred by defects in proofreading and MMR have important biological implications.


Asunto(s)
Reparación de la Incompatibilidad de ADN , Inestabilidad Genómica , Mutación INDEL , ADN Polimerasa Dirigida por ADN/genética , Genoma Fúngico , Mutación , Tasa de Mutación , Secuencias Repetitivas de Ácidos Nucleicos
17.
PLoS Genet ; 8(10): e1003016, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23071460

RESUMEN

The two DNA strands of the nuclear genome are replicated asymmetrically using three DNA polymerases, α, δ, and ε. Current evidence suggests that DNA polymerase ε (Pol ε) is the primary leading strand replicase, whereas Pols α and δ primarily perform lagging strand replication. The fact that these polymerases differ in fidelity and error specificity is interesting in light of the fact that the stability of the nuclear genome depends in part on the ability of mismatch repair (MMR) to correct different mismatches generated in different contexts during replication. Here we provide the first comparison, to our knowledge, of the efficiency of MMR of leading and lagging strand replication errors. We first use the strand-biased ribonucleotide incorporation propensity of a Pol ε mutator variant to confirm that Pol ε is the primary leading strand replicase in Saccharomyces cerevisiae. We then use polymerase-specific error signatures to show that MMR efficiency in vivo strongly depends on the polymerase, the mismatch composition, and the location of the mismatch. An extreme case of variation by location is a T-T mismatch that is refractory to MMR. This mismatch is flanked by an AT-rich triplet repeat sequence that, when interrupted, restores MMR to > 95% efficiency. Thus this natural DNA sequence suppresses MMR, placing a nearby base pair at high risk of mutation due to leading strand replication infidelity. We find that, overall, MMR most efficiently corrects the most potentially deleterious errors (indels) and then the most common substitution mismatches. In combination with earlier studies, the results suggest that significant differences exist in the generation and repair of Pol α, δ, and ε replication errors, but in a generally complementary manner that results in high-fidelity replication of both DNA strands of the yeast nuclear genome.


Asunto(s)
Reparación de la Incompatibilidad de ADN , Replicación del ADN , Secuencia de Bases , ADN Polimerasa II/metabolismo , Datos de Secuencia Molecular , Mutagénesis , Tasa de Mutación , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
18.
Proc Natl Acad Sci U S A ; 107(41): 17674-9, 2010 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-20876092

RESUMEN

To investigate DNA replication enzymology across the nuclear genome of budding yeast, deep sequencing was used to establish the pattern of uncorrected replication errors generated by an asymmetric mutator variant of DNA polymerase δ (Pol δ). Sequencing of 16 genomes identified 1,206-bp substitutions generated over 33 generations by L612M Pol δ in a mismatch repair defective strain. Alignment of sequences flanking these substitutions identified "hotspot" motifs for Pol δ replication errors. The substitutions were distributed evenly across all 16 chromosomes. The vast majority were transitions that occurred with a strand bias that varied in a predictable manner relative to known functional origins of replication. This strand bias strongly supports the idea that Pol δ is primarily a lagging strand polymerase during replication across the entire nuclear genome.


Asunto(s)
ADN Polimerasa III/genética , Replicación del ADN/genética , Modelos Genéticos , Mutación/genética , Saccharomyces cerevisiae/genética , Disparidad de Par Base/genética , Secuencia de Bases , Replicación del ADN/fisiología , Biblioteca de Genes , Genoma Fúngico/genética , Datos de Secuencia Molecular , Polimorfismo de Nucleótido Simple/genética , Origen de Réplica/genética , Alineación de Secuencia , Análisis de Secuencia de ADN
19.
Methods Mol Biol ; 2615: 427-441, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36807807

RESUMEN

Mitochondrial DNA (mtDNA) encodes components essential for cellular respiration. Low levels of point mutations and deletions accumulate in mtDNA during normal aging. However, improper maintenance of mtDNA results in mitochondrial diseases, stemming from progressive loss of mitochondrial function through the accelerated formation of deletions and mutations in mtDNA. To better understand the molecular mechanisms underlying the creation and propagation of mtDNA deletions, we developed the LostArc next-generation DNA sequencing pipeline to detect and quantify rare mtDNA species in small tissue samples. LostArc procedures are designed to minimize PCR amplification of mtDNA and instead achieve enrichment of mtDNA by selective destruction of nuclear DNA. This approach leads to cost-effective, high-depth sequencing of mtDNA with a sensitivity sufficient to identify one mtDNA deletion per million mtDNA circles. Here, we describe detailed protocols for isolation of genomic DNA from mouse tissues, enrichment of mtDNA through enzymatic destruction of linear nuclear DNA, and preparation of libraries for unbiased next-generation sequencing of mtDNA.


Asunto(s)
ADN Mitocondrial , Enfermedades Mitocondriales , Ratones , Animales , ADN Mitocondrial/genética , Mitocondrias/genética , Enfermedades Mitocondriales/genética , Mutación Puntual , Secuenciación de Nucleótidos de Alto Rendimiento/métodos
20.
Nucleic Acids Res ; 38(17): 5929-43, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-20448025

RESUMEN

Bacteria expand their genetic diversity, spread antibiotic resistance genes, and obtain virulence factors through the highly coordinated process of conjugative plasmid transfer (CPT). A plasmid-encoded relaxase enzyme initiates and terminates CPT by nicking and religating the transferred plasmid in a sequence-specific manner. We solved the 2.3 A crystal structure of the relaxase responsible for the spread of the resistance plasmid pCU1 and determined its DNA binding and nicking capabilities. The overall fold of the pCU1 relaxase is similar to that of the F plasmid and plasmid R388 relaxases. However, in the pCU1 structure, the conserved tyrosine residues (Y18,19,26,27) that are required for DNA nicking and religation were displaced up to 14 A out of the relaxase active site, revealing a high degree of mobility in this region of the enzyme. In spite of this flexibility, the tyrosines still cleaved the nic site of the plasmid's origin of transfer, and did so in a sequence-specific, metal-dependent manner. Unexpectedly, the pCU1 relaxase lacked the sequence-specific DNA binding previously reported for the homologous F and R388 relaxase enzymes, despite its high sequence and structural similarity with both proteins. In summary, our work outlines novel structural and functional aspects of the relaxase-mediated conjugative transfer of plasmid pCU1.


Asunto(s)
Proteínas Bacterianas/química , ADN Nucleotidiltransferasas/química , ADN/metabolismo , Secuencia de Aminoácidos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Secuencia de Bases , Conjugación Genética , Cristalografía por Rayos X , ADN/química , ADN Nucleotidiltransferasas/genética , ADN Nucleotidiltransferasas/metabolismo , Metales/química , Modelos Moleculares , Datos de Secuencia Molecular , Plásmidos/genética , Estructura Terciaria de Proteína , Homología de Secuencia de Aminoácido , Tirosina/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA