Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 126
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 173(4): 972-988.e23, 2018 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-29656893

RESUMEN

Repair of damaged DNA is essential for maintaining genome integrity and for preventing genome-instability-associated diseases, such as cancer. By combining proximity labeling with quantitative mass spectrometry, we generated high-resolution interaction neighborhood maps of the endogenously expressed DNA repair factors 53BP1, BRCA1, and MDC1. Our spatially resolved interaction maps reveal rich network intricacies, identify shared and bait-specific interaction modules, and implicate previously concealed regulators in this process. We identified a novel vertebrate-specific protein complex, shieldin, comprising REV7 plus three previously uncharacterized proteins, RINN1 (CTC-534A2.2), RINN2 (FAM35A), and RINN3 (C20ORF196). Recruitment of shieldin to DSBs, via the ATM-RNF8-RNF168-53BP1-RIF1 axis, promotes NHEJ-dependent repair of intrachromosomal breaks, immunoglobulin class-switch recombination (CSR), and fusion of unprotected telomeres. Shieldin functions as a downstream effector of 53BP1-RIF1 in restraining DNA end resection and in sensitizing BRCA1-deficient cells to PARP inhibitors. These findings have implications for understanding cancer-associated PARPi resistance and the evolution of antibody CSR in higher vertebrates.


Asunto(s)
Reparación del ADN por Unión de Extremidades/efectos de los fármacos , Proteínas de Unión al ADN/metabolismo , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Proteínas Adaptadoras Transductoras de Señales , Proteína BRCA1/antagonistas & inhibidores , Proteína BRCA1/genética , Proteína BRCA1/metabolismo , Proteínas de Ciclo Celular , Línea Celular Tumoral , Roturas del ADN de Doble Cadena , Proteínas de Unión al ADN/antagonistas & inhibidores , Proteínas de Unión al ADN/genética , Humanos , Cambio de Clase de Inmunoglobulina/efectos de los fármacos , Proteínas Mad2/antagonistas & inhibidores , Proteínas Mad2/genética , Proteínas Mad2/metabolismo , Mutagénesis Sitio-Dirigida , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Proteínas de Unión a Telómeros/antagonistas & inhibidores , Proteínas de Unión a Telómeros/genética , Proteínas de Unión a Telómeros/metabolismo , Transactivadores/genética , Transactivadores/metabolismo , Proteína 1 de Unión al Supresor Tumoral P53/antagonistas & inhibidores , Proteína 1 de Unión al Supresor Tumoral P53/genética , Proteína 1 de Unión al Supresor Tumoral P53/metabolismo , Ubiquitina-Proteína Ligasas/antagonistas & inhibidores , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo
2.
Cell ; 153(7): 1431-4, 2013 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-23791174

RESUMEN

Signal amplifications are vital for chromatin function, yet they also bear the risk of transforming into unrestrained, self-escalating, and potentially harmful responses. Examples of inbuilt limitations are emerging, revealing how chromatin transactions are confined within physiological boundaries.


Asunto(s)
Cromatina/metabolismo , Reparación del ADN , Transcripción Genética , Animales , Fenómenos Fisiológicos Celulares , Daño del ADN , Regulación de la Expresión Génica , Humanos , Puntos de Control de la Fase M del Ciclo Celular , Transducción de Señal
3.
Cell ; 155(5): 1088-103, 2013 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-24267891

RESUMEN

ATR, activated by replication stress, protects replication forks locally and suppresses origin firing globally. Here, we show that these functions of ATR are mechanistically coupled. Although initially stable, stalled forks in ATR-deficient cells undergo nucleus-wide breakage after unscheduled origin firing generates an excess of single-stranded DNA that exhausts the nuclear pool of RPA. Partial reduction of RPA accelerated fork breakage, and forced elevation of RPA was sufficient to delay such "replication catastrophe" even in the absence of ATR activity. Conversely, unscheduled origin firing induced breakage of stalled forks even in cells with active ATR. Thus, ATR-mediated suppression of dormant origins shields active forks against irreversible breakage via preventing exhaustion of nuclear RPA. This study elucidates how replicating genomes avoid destabilizing DNA damage. Because cancer cells commonly feature intrinsically high replication stress, this study also provides a molecular rationale for their hypersensitivity to ATR inhibitors.


Asunto(s)
Replicación del ADN , Inestabilidad Genómica , Proteína de Replicación A/metabolismo , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Línea Celular Tumoral , Cromatina/química , Cromatina/metabolismo , Daño del ADN/efectos de los fármacos , Humanos , Neoplasias/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Origen de Réplica
4.
Cell ; 150(4): 697-709, 2012 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-22884692

RESUMEN

Histone ubiquitylation is a prominent response to DNA double-strand breaks (DSBs), but how these modifications are confined to DNA lesions is not understood. Here, we show that TRIP12 and UBR5, two HECT domain ubiquitin E3 ligases, control accumulation of RNF168, a rate-limiting component of a pathway that ubiquitylates histones after DNA breakage. We find that RNF168 can be saturated by increasing amounts of DSBs. Depletion of TRIP12 and UBR5 allows accumulation of RNF168 to supraphysiological levels, followed by massive spreading of ubiquitin conjugates and hyperaccumulation of ubiquitin-regulated genome caretakers such as 53BP1 and BRCA1. Thus, regulatory and proteolytic ubiquitylations are wired in a self-limiting circuit that promotes histone ubiquitylation near the DNA lesions but at the same time counteracts its excessive spreading to undamaged chromosomes. We provide evidence that this mechanism is vital for the homeostasis of ubiquitin-controlled events after DNA breakage and can be subverted during tumorigenesis.


Asunto(s)
Proteínas Portadoras/metabolismo , Cromatina/metabolismo , Roturas del ADN de Doble Cadena , Reparación del ADN , Ubiquitina-Proteína Ligasas/metabolismo , Alphapapillomavirus , Línea Celular , Línea Celular Tumoral , Silenciador del Gen , Humanos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Neoplasias/metabolismo , Neoplasias/patología , Neoplasias/virología , Infecciones por Papillomavirus/metabolismo , Infecciones por Papillomavirus/patología , Transcripción Genética , Proteína 1 de Unión al Supresor Tumoral P53 , Ubiquitinación
5.
Cell ; 146(2): 189-91, 2011 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-21784241

RESUMEN

Although events associated with replication stress have long formed the cornerstone of checkpoint activation, questions remain about how cells maintain the integrity of replicating genomes. Now, Bermejo et al. (2011) identify a mechanism directly linking checkpoint function to the relief of topological tension at nuclear pore tethered genes.

6.
Nature ; 587(7833): 297-302, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33087936

RESUMEN

Minichromosome maintenance proteins (MCMs) are DNA-dependent ATPases that bind to replication origins and license them to support a single round of DNA replication. A large excess of MCM2-7 assembles on chromatin in G1 phase as pre-replication complexes (pre-RCs), of which only a fraction become the productive CDC45-MCM-GINS (CMG) helicases that are required for genome duplication1-4. It remains unclear why cells generate this surplus of MCMs, how they manage to sustain it across multiple generations, and why even a mild reduction in the MCM pool compromises the integrity of replicating genomes5,6. Here we show that, for daughter cells to sustain error-free DNA replication, their mother cells build up a nuclear pool of MCMs both by recycling chromatin-bound (parental) MCMs and by synthesizing new (nascent) MCMs. Although all MCMs can form pre-RCs, it is the parental pool that is inherently stable and preferentially matures into CMGs. By contrast, nascent MCM3-7 (but not MCM2) undergo rapid proteolysis in the cytoplasm, and their stabilization and nuclear translocation require interaction with minichromosome-maintenance complex-binding protein (MCMBP), a distant MCM paralogue7,8. By chaperoning nascent MCMs, MCMBP safeguards replicating genomes by increasing chromatin coverage with pre-RCs that do not participate on replication origins but adjust the pace of replisome movement to minimize errors during DNA replication. Consequently, although the paucity of pre-RCs in MCMBP-deficient cells does not alter DNA synthesis overall, it increases the speed and asymmetry of individual replisomes, which leads to DNA damage. The surplus of MCMs therefore increases the robustness of genome duplication by restraining the speed at which eukaryotic cells replicate their DNA. Alterations in physiological fork speed might thus explain why even a minor reduction in MCM levels destabilizes the genome and predisposes to increased incidence of tumour formation.


Asunto(s)
Replicación del ADN/genética , Genoma Humano/genética , Proteínas de Mantenimiento de Minicromosoma/biosíntesis , Proteínas de Mantenimiento de Minicromosoma/metabolismo , Transporte Activo de Núcleo Celular , Proteínas Adaptadoras Transductoras de Señales/química , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Portadoras/química , Proteínas Portadoras/metabolismo , Línea Celular Tumoral , Núcleo Celular/metabolismo , Cromatina/genética , Cromatina/metabolismo , Daño del ADN , Humanos , Proteínas de Mantenimiento de Minicromosoma/análisis , Chaperonas Moleculares/química , Chaperonas Moleculares/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patología , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Estabilidad Proteica , Transporte de Proteínas
7.
Nature ; 574(7779): 571-574, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31645724

RESUMEN

To safeguard genome integrity in response to DNA double-strand breaks (DSBs), mammalian cells mobilize the neighbouring chromatin to shield DNA ends against excessive resection that could undermine repair fidelity and cause damage to healthy chromosomes1. This form of genome surveillance is orchestrated by 53BP1, whose accumulation at DSBs triggers sequential recruitment of RIF1 and the shieldin-CST-POLα complex2. How this pathway reflects and influences the three-dimensional nuclear architecture is not known. Here we use super-resolution microscopy to show that 53BP1 and RIF1 form an autonomous functional module that stabilizes three-dimensional chromatin topology at sites of DNA breakage. This process is initiated by accumulation of 53BP1 at regions of compact chromatin that colocalize with topologically associating domain (TAD) sequences, followed by recruitment of RIF1 to the boundaries between such domains. The alternating distribution of 53BP1 and RIF1 stabilizes several neighbouring TAD-sized structures at a single DBS site into an ordered, circular arrangement. Depletion of 53BP1 or RIF1 (but not shieldin) disrupts this arrangement and leads to decompaction of DSB-flanking chromatin, reduction in interchromatin space, aberrant spreading of DNA repair proteins, and hyper-resection of DNA ends. Similar topological distortions are triggered by depletion of cohesin, which suggests that the maintenance of chromatin structure after DNA breakage involves basic mechanisms that shape three-dimensional nuclear organization. As topological stabilization of DSB-flanking chromatin is independent of DNA repair, we propose that, besides providing a structural scaffold to protect DNA ends against aberrant processing, 53BP1 and RIF1 safeguard epigenetic integrity at loci that are disrupted by DNA breakage.


Asunto(s)
Cromatina/genética , Cromatina/metabolismo , Inestabilidad Genómica , Conformación de Ácido Nucleico , Proteínas de Ciclo Celular/deficiencia , Proteínas de Ciclo Celular/metabolismo , Línea Celular Tumoral , Cromatina/química , Roturas del ADN de Doble Cadena , Reparación del ADN , Proteínas de Unión al ADN/deficiencia , Proteínas de Unión al ADN/metabolismo , Humanos , Proteínas de Unión a Telómeros/deficiencia , Proteínas de Unión a Telómeros/metabolismo , Proteína 1 de Unión al Supresor Tumoral P53/deficiencia , Proteína 1 de Unión al Supresor Tumoral P53/metabolismo
8.
Mol Cell ; 66(6): 735-749, 2017 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-28622519

RESUMEN

Proliferating cells rely on the so-called DNA replication checkpoint to ensure orderly completion of genome duplication, and its malfunction may lead to catastrophic genome disruption, including unscheduled firing of replication origins, stalling and collapse of replication forks, massive DNA breakage, and, ultimately, cell death. Despite many years of intensive research into the molecular underpinnings of the eukaryotic replication checkpoint, the mechanisms underlying the dismal consequences of its failure remain enigmatic. A recent development offers a unifying model in which the replication checkpoint guards against global exhaustion of rate-limiting replication regulators. Here we discuss how such a mechanism can prevent catastrophic genome disruption and suggest how to harness this knowledge to advance therapeutic strategies to eliminate cancer cells that inherently proliferate under increased DNA replication stress.


Asunto(s)
Proliferación Celular , Daño del ADN , Reparación del ADN , Replicación del ADN , ADN/biosíntesis , Inestabilidad Genómica , Neoplasias/metabolismo , Animales , Muerte Celular , ADN/genética , Humanos , Neoplasias/genética , Neoplasias/patología , Neoplasias/terapia , Proteína de Replicación A/metabolismo
9.
Cell ; 136(3): 435-46, 2009 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-19203579

RESUMEN

DNA double-strand breaks (DSBs) not only interrupt the genetic information, but also disrupt the chromatin structure, and both impairments require repair mechanisms to ensure genome integrity. We showed previously that RNF8-mediated chromatin ubiquitylation protects genome integrity by promoting the accumulation of repair factors at DSBs. Here, we provide evidence that, while RNF8 is necessary to trigger the DSB-associated ubiquitylations, it is not sufficient to sustain conjugated ubiquitin in this compartment. We identified RNF168 as a novel chromatin-associated ubiquitin ligase with an ability to bind ubiquitin. We show that RNF168 interacts with ubiquitylated H2A, assembles at DSBs in an RNF8-dependent manner, and, by targeting H2A and H2AX, amplifies local concentration of lysine 63-linked ubiquitin conjugates to the threshold required for retention of 53BP1 and BRCA1. Thus, RNF168 defines a new pathway involving sequential ubiquitylations on damaged chromosomes and uncovers a functional cooperation between E3 ligases in genome maintenance.


Asunto(s)
Cromosomas/metabolismo , Roturas del ADN de Doble Cadena , Reparación del ADN , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina/metabolismo , Línea Celular , Proteínas de Unión al ADN/metabolismo , Técnicas de Silenciamiento del Gen , Histonas/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Estructura Terciaria de Proteína , Proteína 1 de Unión al Supresor Tumoral P53 , Ubiquitina-Proteína Ligasas/química , Ubiquitina-Proteína Ligasas/genética
10.
Mol Cell ; 64(6): 1127-1134, 2016 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-27984746

RESUMEN

Human cancers are characterized by the presence of oncogene-induced DNA replication stress (DRS), making them dependent on repair pathways such as break-induced replication (BIR) for damaged DNA replication forks. To better understand BIR, we performed a targeted siRNA screen for genes whose depletion inhibited G1 to S phase progression when oncogenic cyclin E was overexpressed. RAD52, a gene dispensable for normal development in mice, was among the top hits. In cells in which fork collapse was induced by oncogenes or chemicals, the Rad52 protein localized to DRS foci. Depletion of Rad52 by siRNA or knockout of the gene by CRISPR/Cas9 compromised restart of collapsed forks and led to DNA damage in cells experiencing DRS. Furthermore, in cancer-prone, heterozygous APC mutant mice, homozygous deletion of the Rad52 gene suppressed tumor growth and prolonged lifespan. We therefore propose that mammalian RAD52 facilitates repair of collapsed DNA replication forks in cancer cells.


Asunto(s)
Proteína de la Poliposis Adenomatosa del Colon/genética , Ciclina E/genética , Roturas del ADN de Doble Cadena , ADN/genética , Osteosarcoma/genética , Proteína Recombinante y Reparadora de ADN Rad52/genética , Reparación del ADN por Recombinación , Proteína de la Poliposis Adenomatosa del Colon/deficiencia , Animales , Sistemas CRISPR-Cas , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Ciclina E/metabolismo , ADN/metabolismo , Fase G1 , Expresión Génica , Inestabilidad Genómica , Humanos , Ratones , Ratones Noqueados , Nocodazol/farmacología , Osteosarcoma/metabolismo , Osteosarcoma/mortalidad , Osteosarcoma/patología , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Proteína Recombinante y Reparadora de ADN Rad52/antagonistas & inhibidores , Proteína Recombinante y Reparadora de ADN Rad52/metabolismo , Fase S , Estrés Fisiológico , Análisis de Supervivencia
11.
Mol Cell ; 52(2): 272-85, 2013 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-24055347

RESUMEN

Poly(ADP-ribos)ylation (PARylation) is a reversible posttranslational modification found in higher eukaryotes. However, little is known about PARylation acceptor proteins. Here, we describe a sensitive proteomics approach based on high-accuracy quantitative mass spectrometry for the identification of PARylated proteins induced under different cellular stress conditions. While confirming the majority of known PARylated substrates, our screen identifies numerous additional PARylation targets. In vivo and in vitro validation of acceptor proteins confirms that our methodology targets covalent PARylation. Nuclear proteins encompassing nucleic acid binding properties are prominently PARylated upon genotoxic stress, consistent with the nuclear localization of ARTD1/PARP1 and ARTD2/PARP2. Distinct differences in proteins becoming PARylated upon various genotoxic insults are observed, exemplified by the PARylation of RNA-processing factors THRAP3 and TAF15 under oxidative stress. High-content imaging reveals that PARylation affects the nuclear relocalization of THRAP3 and TAF15, demonstrating the potential of our approach to uncover hitherto unappreciated processes being controlled by specific genotoxic-stress-induced PARylation.


Asunto(s)
Daño del ADN , Poli Adenosina Difosfato Ribosa/metabolismo , Proteoma/metabolismo , Proteómica/métodos , Antineoplásicos Alquilantes/farmacología , Línea Celular Tumoral , Núcleo Celular/genética , Núcleo Celular/metabolismo , Cromatografía Liquida , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Electroforesis en Gel de Poliacrilamida , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Células HeLa , Humanos , Peróxido de Hidrógeno/farmacología , Metilmetanosulfonato/farmacología , Microscopía Confocal , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Oxidantes/farmacología , Procesamiento Proteico-Postraduccional/efectos de los fármacos , Procesamiento Proteico-Postraduccional/efectos de la radiación , Proteoma/genética , Interferencia de ARN , Radiación Ionizante , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Transducción de Señal/efectos de la radiación , Factores Asociados con la Proteína de Unión a TATA/genética , Factores Asociados con la Proteína de Unión a TATA/metabolismo , Espectrometría de Masas en Tándem , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
12.
Mol Cell ; 52(2): 206-20, 2013 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-24055346

RESUMEN

Although the general relevance of chromatin modifications for genotoxic stress signaling, cell-cycle checkpoint activation, and DNA repair is well established, how these modifications reach initial thresholds in order to trigger robust responses remains largely unexplored. Here, we identify the chromatin-associated scaffold attachment factor SAFB1 as a component of the DNA damage response and show that SAFB1 cooperates with histone acetylation to allow for efficient γH2AX spreading and genotoxic stress signaling. SAFB1 undergoes a highly dynamic exchange at damaged chromatin in a poly(ADP-ribose)-polymerase 1- and poly(ADP-ribose)-dependent manner and is required for unperturbed cell-cycle checkpoint activation and guarding cells against replicative stress. Altogether, our data reveal that transient recruitment of an architectural chromatin component is required in order to overcome physiological barriers by making chromatin permissive for DNA damage signaling, whereas the ensuing exclusion of SAFB1 may help prevent excessive signaling.


Asunto(s)
Cromatina/genética , Daño del ADN , Proteínas de Unión a la Región de Fijación a la Matriz/genética , Proteínas Asociadas a Matriz Nuclear/genética , Receptores de Estrógenos/genética , Transducción de Señal/genética , Acetilación , Western Blotting , Puntos de Control del Ciclo Celular/genética , Línea Celular Tumoral , Cromatina/metabolismo , Roturas del ADN de Doble Cadena/efectos de los fármacos , Roturas del ADN de Doble Cadena/efectos de la radiación , Reparación del ADN , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Histonas/metabolismo , Humanos , Proteínas de Unión a la Región de Fijación a la Matriz/metabolismo , Microscopía Fluorescente , Modelos Genéticos , Pruebas de Mutagenicidad , Proteínas Asociadas a Matriz Nuclear/metabolismo , Fosforilación , Poli Adenosina Difosfato Ribosa/metabolismo , Poli(ADP-Ribosa) Polimerasas/metabolismo , Interferencia de ARN , Receptores de Estrógenos/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
13.
Genes Dev ; 27(22): 2459-72, 2013 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-24240236

RESUMEN

Cdc7 kinase regulates DNA replication. However, its role in DNA repair and recombination is poorly understood. Here we describe a pathway that stabilizes the human Cdc7-ASK (activator of S-phase kinase; also called Dbf4), its regulation, and its function in cellular responses to compromised DNA replication. Stalled DNA replication evoked stabilization of the Cdc7-ASK (Dbf4) complex in a manner dependent on ATR-Chk1-mediated checkpoint signaling and its interplay with the anaphase-promoting complex/cyclosome(Cdh1) (APC/C(Cdh1)) ubiquitin ligase. Mechanistically, Chk1 kinase inactivates APC/C(Cdh1) through degradation of Cdh1 upon replication block, thereby stabilizing APC/C(Cdh1) substrates, including Cdc7-ASK (Dbf4). Furthermore, motif C of ASK (Dbf4) interacts with the N-terminal region of RAD18 ubiquitin ligase, and this interaction is required for chromatin binding of RAD18. Impaired interaction of ASK (Dbf4) with RAD18 disables foci formation by RAD18 and hinders chromatin loading of translesion DNA polymerase η. These findings define a novel mechanism that orchestrates replication checkpoint signaling and ubiquitin-proteasome machinery with the DNA damage bypass pathway to guard against replication collapse under conditions of replication stress.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Daño del ADN , Replicación del ADN , Antígenos CD , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Cadherinas/metabolismo , Proteínas de Ciclo Celular/genética , Línea Celular Tumoral , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1) , Estabilidad de Enzimas , Genes APC/fisiología , Células HEK293 , Células HeLa , Humanos , Unión Proteica , Proteínas Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal
14.
EMBO Rep ; 16(11): 1413-4, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26420434

RESUMEN

Long non-coding RNAs (lncRNAs) have emerged as regulators of various biological processes, but to which extent lncRNAs play a role in genome integrity maintenance is not well understood. In this issue of EMBO Reports, Sharma et al [1] identify the DNA damage-induced lncRNA DDSR1 as an integral player of the DNA damage response (DDR). DDSR1 has both an early role by modulating repair pathway choices, and a later function when it regulates gene expression. Sharma et al [1] thus uncover a dual role for a hitherto uncharacterized lncRNA during the cellular response to DNA damage.


Asunto(s)
Proteína BRCA1/metabolismo , Daño del ADN , Recombinación Homóloga , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Humanos
15.
Nucleic Acids Res ; 43(10): 4950-61, 2015 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-25916843

RESUMEN

DNA double strand breaks (DSBs) formed during S phase are preferentially repaired by homologous recombination (HR), whereas G1 DSBs, such as those occurring during immunoglobulin class switch recombination (CSR), are repaired by non-homologous end joining (NHEJ). The DNA damage response proteins 53BP1 and BRCA1 regulate the balance between NHEJ and HR. 53BP1 promotes CSR in part by mediating synapsis of distal DNA ends, and in addition, inhibits 5' end resection. BRCA1 antagonizes 53BP1 dependent DNA end-blocking activity during S phase, which would otherwise promote mutagenic NHEJ and genome instability. Recently, it was shown that supra-physiological levels of the E3 ubiquitin ligase RNF168 results in the hyper-accumulation of 53BP1/BRCA1 which accelerates DSB repair. Here, we ask whether increased expression of RNF168 or 53BP1 impacts physiological versus mutagenic NHEJ. We find that the anti-resection activities of 53BP1 are rate-limiting for mutagenic NHEJ but not for physiological CSR. As heterogeneity in the expression of RNF168 and 53BP1 is found in human tumors, our results suggest that deregulation of the RNF168/53BP1 pathway could alter the chemosensitivity of BRCA1 deficient tumors.


Asunto(s)
Proteínas Cromosómicas no Histona/metabolismo , Reparación del ADN por Unión de Extremidades , Proteínas de Unión al ADN/metabolismo , Mutagénesis , Ubiquitina-Proteína Ligasas/metabolismo , Animales , Proteína BRCA1/genética , Células Cultivadas , Proteínas Cromosómicas no Histona/genética , Proteínas de Unión al ADN/genética , Inestabilidad Genómica , Cambio de Clase de Inmunoglobulina , Ratones , Ratones Noqueados , Inhibidores de Poli(ADP-Ribosa) Polimerasas , Proteína de Replicación A/metabolismo , Proteína 1 de Unión al Supresor Tumoral P53
16.
Curr Opin Cell Biol ; 19(2): 238-45, 2007 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-17303408

RESUMEN

In response to diverse genotoxic stresses, cells activate DNA damage checkpoint pathways to protect genomic integrity and promote survival of the organism. Depending on DNA lesions and context, damaged cells with alarmed checkpoints can be eliminated by apoptosis or silenced by cellular senescence, or can survive and resume cell cycle progression upon checkpoint termination. Over the past two years a plethora of mechanistic studies have provided exciting insights into the biology and pathology of checkpoint initiation and signal propagation, and have revealed the various ways in which the response can be terminated: through recovery, adaptation or cancer-prone subversion. Such studies highlight the dynamic nature of these processes and help us to better understand the molecular basis, spatiotemporal orchestration and biological significance of the DNA damage response in normal and cancerous cells.


Asunto(s)
Ciclo Celular/fisiología , Daño del ADN , Reparación del ADN , Animales , Proteínas de Ciclo Celular/metabolismo , Replicación del ADN , Genes cdc , Inestabilidad Genómica , Humanos , Neoplasias/genética , Neoplasias/metabolismo , Transducción de Señal
17.
EMBO Rep ; 13(6): 561-8, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22565321

RESUMEN

The conserved MRE11­RAD50­NBS1 (MRN) complex is an important sensor of DNA double-strand breaks (DSBs) and facilitates DNA repair by homologous recombination (HR) and end joining. Here, we identify NBS1 as a target of cyclin-dependent kinase (CDK) phosphorylation. We show that NBS1 serine 432 phosphorylation occurs in the S, G2 and M phases of the cell cycle and requires CDK activity. This modification stimulates MRN-dependent conversion of DSBs into structures that are substrates for repair by HR. Impairment of NBS1 phosphorylation not only negatively affects DSB repair by HR, but also prevents resumption of DNA replication after replication-fork stalling. Thus, CDK-mediated NBS1 phosphorylation defines a molecular switch that controls the choice of repair mode for DSBs.


Asunto(s)
Proteína Quinasa CDC2/metabolismo , Proteínas de Ciclo Celular/metabolismo , División del ADN , Replicación del ADN , Recombinación Homóloga , Proteínas Nucleares/metabolismo , Ácido Anhídrido Hidrolasas , Sustitución de Aminoácidos , Proteína Quinasa CDC2/química , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Línea Celular Tumoral , Roturas del ADN de Doble Cadena , Reparación del ADN , Enzimas Reparadoras del ADN/química , Proteínas de Unión al ADN/química , Humanos , Proteína Homóloga de MRE11 , Mutagénesis Sitio-Dirigida , Proteínas Nucleares/química , Proteínas Nucleares/genética , Fosforilación , Procesamiento Proteico-Postraduccional , Serina/genética , Serina/metabolismo
18.
Nucleic Acids Res ; 40(9): 3913-28, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22234878

RESUMEN

Mdc1 is a large modular phosphoprotein scaffold that maintains signaling and repair complexes at double-stranded DNA break sites. Mdc1 is anchored to damaged chromatin through interaction of its C-terminal BRCT-repeat domain with the tail of γH2AX following DNA damage, but the role of the N-terminal forkhead-associated (FHA) domain remains unclear. We show that a major binding target of the Mdc1 FHA domain is a previously unidentified DNA damage and ATM-dependent phosphorylation site near the N-terminus of Mdc1 itself. Binding to this motif stabilizes a weak self-association of the FHA domain to form a tight dimer. X-ray structures of free and complexed Mdc1 FHA domain reveal a 'head-to-tail' dimerization mechanism that is closely related to that seen in pre-activated forms of the Chk2 DNA damage kinase, and which both positively and negatively influences Mdc1 FHA domain-mediated interactions in human cells prior to and following DNA damage.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Transactivadores/química , Transactivadores/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Proteínas Adaptadoras Transductoras de Señales , Secuencia de Aminoácidos , Animales , Proteínas de la Ataxia Telangiectasia Mutada , Células Cultivadas , Proteínas Cromosómicas no Histona/análisis , Roturas del ADN de Doble Cadena , Proteínas de Unión al ADN/análisis , Dimerización , Humanos , Ratones , Modelos Moleculares , Datos de Secuencia Molecular , Fosfotreonina/metabolismo , Dominios y Motivos de Interacción de Proteínas , Treonina/metabolismo , Proteína 1 de Unión al Supresor Tumoral P53
19.
EMBO J ; 28(6): 652-62, 2009 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-19197236

RESUMEN

The protein kinases ataxia-telangiectasia mutated (ATM) and ATM-Rad3 related (ATR) are activated in response to DNA damage, genotoxic stress and virus infections. Here we show that during infection with wild-type adenovirus, ATR and its cofactors RPA32, ATRIP and TopBP1 accumulate at viral replication centres, but there is minimal ATR activation. We show that the Mre11/Rad50/Nbs1 (MRN) complex is recruited to viral centres only during infection with adenoviruses lacking the early region E4 and ATR signaling is activated. This suggests a novel requirement for the MRN complex in ATR activation during virus infection, which is independent of Mre11 nuclease activity and recruitment of RPA/ATR/ATRIP/TopBP1. Unlike other damage scenarios, we found that ATM and ATR signaling are not dependent on each other during infection. We identify a region of the viral E4orf3 protein responsible for immobilization of the MRN complex and show that this prevents ATR signaling during adenovirus infection. We propose that immobilization of the MRN damage sensor by E4orf3 protein prevents recognition of viral genomes and blocks detrimental aspects of checkpoint signaling during virus infection.


Asunto(s)
Infecciones por Adenoviridae/metabolismo , Proteínas de Ciclo Celular/metabolismo , Enzimas Reparadoras del ADN/metabolismo , Proteínas de Unión al ADN/metabolismo , Complejos Multiproteicos/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal , Ácido Anhídrido Hidrolasas , Adenoviridae/fisiología , Proteínas E4 de Adenovirus/química , Proteínas E4 de Adenovirus/metabolismo , Secuencia de Aminoácidos , Proteínas de la Ataxia Telangiectasia Mutada , Línea Celular , Humanos , Proteína Homóloga de MRE11 , Datos de Secuencia Molecular , Fosforilación , Transporte de Proteínas , Proteínas Supresoras de Tumor/metabolismo , Replicación Viral
20.
Nat Cell Biol ; 8(8): 870-6, 2006 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-16862143

RESUMEN

The cellular DNA-damage response is a signaling network that is vigorously activated by cytotoxic DNA lesions, such as double-strand breaks (DSBs). The DSB response is mobilized by the nuclear protein kinase ATM, which modulates this process by phosphorylating key players in these pathways. A long-standing question in this field is whether DSB formation affects chromatin condensation. Here, we show that DSB formation is followed by ATM-dependent chromatin relaxation. ATM's effector in this pathway is the protein KRAB-associated protein (KAP-1, also known as TIF1beta, KRIP-1 or TRIM28), previously known as a corepressor of gene transcription. In response to DSB induction, KAP-1 is phosphorylated in an ATM-dependent manner on Ser 824. KAP-1 is phosphorylated exclusively at the damage sites, from which phosphorylated KAP-1 spreads rapidly throughout the chromatin. Ablation of the phosphorylation site of KAP-1 leads to loss of DSB-induced chromatin decondensation and renders the cells hypersensitive to DSB-inducing agents. Knocking down KAP-1, or mimicking a constitutive phosphorylation of this protein, leads to constitutive chromatin relaxation. These results suggest that chromatin relaxation is a fundamental pathway in the DNA-damage response and identify its primary mediators.


Asunto(s)
Proteínas de Ciclo Celular/fisiología , Cromatina/metabolismo , Daño del ADN , Proteínas de Unión al ADN/fisiología , Proteínas Serina-Treonina Quinasas/fisiología , Proteínas Represoras/fisiología , Transducción de Señal/fisiología , Proteínas Supresoras de Tumor/fisiología , Proteínas de la Ataxia Telangiectasia Mutada , Western Blotting , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Línea Celular , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Relación Dosis-Respuesta a Droga , Humanos , Microscopía Fluorescente , Mutación/genética , Inhibidores de la Síntesis del Ácido Nucleico/farmacología , Fosforilación , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Proteína 28 que Contiene Motivos Tripartito , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo , Cinostatina/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA