Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Mol Ther Nucleic Acids ; 16: 272-283, 2019 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-30933831

RESUMEN

MIR143 is pathologically downregulated and may function as a tumor suppressor in prostate cancer. Likewise, the urokinase plasminogen activator receptor (UPAR) is overexpressed in prostate carcinoma, representing a negative prognostic marker and putative therapeutic target gene. In this paper, we establish UPAR as a new direct target of MIR143. Luciferase reporter gene constructs identify one of the two in silico-predicted binding sites as functionally relevant for direct MIR143 binding to the 3' UTR, and, concomitantly, transfection of MIR143 reduces UPAR protein levels in prostate carcinoma cells in vitro. Inhibitory effects on cell proliferation and colony formation, spheroid growth and integrity, and cell viability are extensively analyzed, and they are compared to direct small interfering RNA (siRNA)-mediated uPAR knockdown or combined microRNA (miRNA)-siRNA treatment. Switching to a therapeutically more relevant in vivo model, we demonstrate tumor-inhibitory effects of MIR143 replacement therapy by systemic treatment of mice bearing subcutaneous PC-3 tumor xenografts with MIR143 formulated in polymeric nanoparticles. This efficient, nanoparticle-mediated delivery of intact MIR143 mediates the marked downregulation of uPAR protein, but not mRNA levels, thus indicating translational inhibition rather than mRNA degradation. In summary, we identify UPAR as a direct target gene of MIR143, and we establish the therapeutic anti-tumor potential of nanoparticle-based MIR143 replacement in prostate cancer.

2.
Oncotarget ; 8(7): 11676-11691, 2017 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-28099931

RESUMEN

Cardiac glycosides are well known in the treatment of cardiovascular diseases; however, their application as treatment option for cancer patients is under discussion. We showed that the cardiac glycoside digitoxin and its analog AMANTADIG can inhibit the growth of renal cell carcinoma (RCC) cell lines and increase G2/M cell cycle arrest. To identify the signaling pathways and molecular basis of this G2/M arrest, microRNAs were profiled using microRNA arrays. Cardiac glycoside treatment significantly deregulated two microRNAs, miR-2278 and miR-670-5p. Pathway enrichment analysis showed that all cardiac glycoside treatments affected the MAPK and the axon guidance pathway. Within these pathways, three genes, MAPK1, NRAS and RAC2, were identified as in silico targets of the deregulated miRNAs. MAPK1 and NRAS are known regulators of G2/M cell cycle arrest. AMANTADIG treatment enhanced the expression of phosphorylated MAPK1 in 786-O cells. Secondly, we studied the expression of survivin known to be affected by cardiac glycosides and to regulate the G2/M cell phase. AMANTADIG treatment upregulated the expression of the pro-apoptotic survivin-2B variant in Caki-1 and 786-O cells. Moreover, treatment with AMANTADIG resulted in significantly lower survivin protein expression compared to 786-O control cells. Summarizing, treatment with all cardiac glycosides induced G2/M cell cycle arrest and downregulated the miR-2278 and miR-670-5p in microarray analysis. All cardiac glycosides affected the MAPK-pathway and survivin expression, both associated with the G2/M phase. Because cells in the G2/M phase are radio- and chemotherapy sensitive, cardiac glycosides like AMANTADIG could potentially improve the efficacy of radio- and/or chemotherapy in RCCs.


Asunto(s)
Carcinoma de Células Renales/tratamiento farmacológico , Digitoxigenina/análogos & derivados , Proteínas Inhibidoras de la Apoptosis/biosíntesis , Neoplasias Renales/tratamiento farmacológico , MicroARNs/biosíntesis , Carcinoma de Células Renales/genética , Carcinoma de Células Renales/metabolismo , Carcinoma de Células Renales/patología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Digitoxigenina/farmacología , Femenino , Puntos de Control de la Fase G2 del Ciclo Celular/efectos de los fármacos , Humanos , Proteínas Inhibidoras de la Apoptosis/metabolismo , Neoplasias Renales/genética , Neoplasias Renales/metabolismo , Neoplasias Renales/patología , Puntos de Control de la Fase M del Ciclo Celular/efectos de los fármacos , MicroARNs/genética , Transducción de Señal , Survivin
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA