Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Environ Manage ; 307: 114522, 2022 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-35066199

RESUMEN

Syngas fermentation, in which microorganisms convert H2, CO, and CO2 to acids and alcohols, is a promising alternative for carbon cycling and valorization. The intellectual landscape of the topic was characterized through a bibliometric analysis using a search query (SQ) that included all relevant documents on syngas fermentation available through the Web of Science database up to December 31st, 2021. The SQ was validated with a preliminary analysis in bibliometrix and a review of titles and abstracts of all sources. Although syngas fermentation began in the early 1980s, it grew rapidly beginning in 2008, with 92.5% of total publications and 87.3% of total citations from 2008 to 2021. The field has been steadily moving from fundamentals towards applications, suggesting that the field is maturing scientifically. The greatest number of publications and citations are from the USA, and researchers in China, Germany, and Spain also are highly active. Although collaborations have increased in the past few years, author-cluster analysis shows specialized research domains with little collaboration between groups. Based on topic trends, the main challenges to be address are related to mass-transfer limitations, and researchers are starting to explore mixed cultures, genetic engineering, microbial chain elongation, and biorefineries.


Asunto(s)
Bibliometría , Fermentación , Ciclo del Carbono , China , Alemania
2.
Membranes (Basel) ; 10(11)2020 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-33142958

RESUMEN

Anaerobic membrane bioreactors (AnMBRs) have demonstrated an excellent capability to treat domestic wastewater. However, biofouling reduces membrane permeability, increasing operational costs and overall energy demand. Soluble microbial products (SMPs) that build up on the membrane surface play a significant role in the biofouling. In this study, the production of SMPs in a 32 L submerged AnMBR operated at three different organic loads (3.0, 4.1 and 1.2 kg chemical oxygen demand (COD)/m3d for phases 1, 2 and 3, respectively) during long-term operation of the reactor (144, 83 and 94 days) were evaluated. The samples were taken from both the permeate and the sludge at three different heights (0.14, 0.44 and 0.75 m). Higher production of SMPs was obtained in phase 2, which was proportional to the membrane fouling. There were no statistically significant differences (p > 0.05) in the SMPs extracted from sludge at different heights among the three phases. In the permeate of phases 1, 2 and 3, the membrane allowed the removal of 56%, 70% and 64% of the SMP concentration in the sludge. SMPs were characterized by molecular weight (MW). A bimodal behavior was obtained, where fractions prevailed with an MW < 1 kDa, associated with SMPs as utilization-associated products (UAPs) caused fouling by the pore-blocking mechanism. The chemical analysis found that, in the SMPs, the unknown COD predominated over the known COD, such as carbohydrates and proteins. These results suggest that further studies in SMP characterization should focus on the unknown COD fraction to understand the membrane fouling in AnMBR systems better.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA