Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Opt Express ; 31(12): 19766-19776, 2023 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-37381385

RESUMEN

Recently introduced, spaceplates achieve the propagation of light for a distance greater than their thickness. In this way, they compress optical space, reducing the required distance between optical elements in an imaging system. Here we introduce a spaceplate based on conventional optics in a 4-f arrangement, mimicking the transfer function of free-space in a thinner system - we term this device a three-lens spaceplate. It is broadband, polarization-independent, and can be used for meter-scale space compression. We experimentally measure compression ratios up to 15.6, replacing up to 4.4 meters of free-space, three orders of magnitude greater than current optical spaceplates. We demonstrate that three-lens spaceplates reduce the length of a full-color imaging system, albeit with reductions in resolution and contrast. We present theoretical limits on the numerical aperture and the compression ratio. Our design presents a simple, accessible, cost-effective method for optically compressing large amounts of space.

2.
Nature ; 543(7647): 647-656, 2017 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-28358065

RESUMEN

Coherence phenomena arise from interference, or the addition, of wave-like amplitudes with fixed phase differences. Although coherence has been shown to yield transformative ways for improving function, advances have been confined to pristine matter and coherence was considered fragile. However, recent evidence of coherence in chemical and biological systems suggests that the phenomena are robust and can survive in the face of disorder and noise. Here we survey the state of recent discoveries, present viewpoints that suggest that coherence can be used in complex chemical systems, and discuss the role of coherence as a design element in realizing function.


Asunto(s)
Biofisica , Modelos Biológicos , Modelos Químicos , Electrones , Transferencia de Energía , Metales/química , Modelos Moleculares , Movimiento (Física) , Teoría Cuántica , Análisis Espectral , Factores de Tiempo , Vibración
3.
Opt Express ; 30(2): 2197-2205, 2022 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-35209365

RESUMEN

The development of metasurfaces has enabled unprecedented portability and functionality in flat optical devices. Spaceplates have recently been introduced as a complementary element to reduce the space between individual metalenses, which will further miniaturize entire imaging devices. However, spaceplates necessitate an optical response which depends on the transverse spatial frequency component of a light field - therefore making it challenging both to design them and to assess their ultimate performance and potential. Here, we employ inverse-design techniques to explore the behaviour of general thin-film-based spaceplates. We observe a tradeoff between the compression factor R and the numerical aperture NA of such devices; we obtained a compression factor of R=5.5 for devices with an NA = 0.42, and up to a record R=340 with NA of 0.017. Our work illustrates that even simple designs consisting of realistic materials (i.e., silicon and glass) permit capable spaceplates for monochromatic applications.

4.
Opt Lett ; 45(15): 4264-4267, 2020 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-32735276

RESUMEN

We report the efficient generation of high-gain parametric down-conversion, including pump depletion, with pump powers as low as 100 µW (energies 0.1 µJ/pulse) and conversion efficiencies up to 33%. In our simple configuration, the pump beam is tightly focused into a bulk periodically poled lithium niobate crystal placed in free space. We also observe a change in the photon number statistics for both the pump and down-converted beams as the pump power increases to reach the depleted pump regime. The experimental results are a clear signature of the interplay between the pump and the down-converted beams in highly efficient parametric down-conversion sources.

5.
Phys Rev Lett ; 125(8): 080501, 2020 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-32909785

RESUMEN

Weak-value amplification (WVA) is a metrological protocol that amplifies ultrasmall physical effects. However, the amplified outcomes necessarily occur with highly suppressed probabilities, leading to the extensive debate on whether the overall measurement precision is improved in comparison to that of conventional measurement (CM). Here, we experimentally demonstrate the unambiguous advantages of WVA that overcome practical limitations including noise and saturation of photodetection and maintain a shot-noise-scaling precision for a large range of input light intensity well beyond the dynamic range of the photodetector. The precision achieved by WVA is 6 times higher than that of CM in our setup. Our results clear the way for the widespread use of WVA in applications involving the measurement of small signals including precision metrology and commercial sensors.

6.
Phys Rev Lett ; 118(7): 070802, 2017 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-28256865

RESUMEN

Weak value amplification (WVA) is a technique by which one can magnify the apparent strength of a measurement signal. Some have claimed that WVA can outperform more conventional measurement schemes in parameter estimation. Nonetheless, a significant body of theoretical work has challenged this perspective, suggesting WVA to be fundamentally suboptimal. Optimal measurements may not be practical, however. Two practical considerations that have been conjectured to afford a benefit to WVA over conventional measurement are certain types of noise and detector saturation. Here, we report a theoretical study of the role of saturation and pixel noise in WVA-based measurement, in which we carry out a Bayesian analysis of the Fisher information available using a saturable, pixelated, digitized, and/or noisy detector. We draw two conclusions: first, that saturation alone does not confer an advantage to the WVA approach over conventional measurement, and second, that WVA can outperform conventional measurement when saturation is combined with intrinsic pixel noise and/or digitization.

7.
Nature ; 474(7350): 188-91, 2011 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-21654800

RESUMEN

The wavefunction is the complex distribution used to completely describe a quantum system, and is central to quantum theory. But despite its fundamental role, it is typically introduced as an abstract element of the theory with no explicit definition. Rather, physicists come to a working understanding of the wavefunction through its use to calculate measurement outcome probabilities by way of the Born rule. At present, the wavefunction is determined through tomographic methods, which estimate the wavefunction most consistent with a diverse collection of measurements. The indirectness of these methods compounds the problem of defining the wavefunction. Here we show that the wavefunction can be measured directly by the sequential measurement of two complementary variables of the system. The crux of our method is that the first measurement is performed in a gentle way through weak measurement, so as not to invalidate the second. The result is that the real and imaginary components of the wavefunction appear directly on our measurement apparatus. We give an experimental example by directly measuring the transverse spatial wavefunction of a single photon, a task not previously realized by any method. We show that the concept is universal, being applicable to other degrees of freedom of the photon, such as polarization or frequency, and to other quantum systems--for example, electron spins, SQUIDs (superconducting quantum interference devices) and trapped ions. Consequently, this method gives the wavefunction a straightforward and general definition in terms of a specific set of experimental operations. We expect it to expand the range of quantum systems that can be characterized and to initiate new avenues in fundamental quantum theory.

8.
Opt Express ; 24(21): 24495-24508, 2016 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-27828177

RESUMEN

We propose a method for directly producing radially and azimuthally polarized photon pairs through spontaneous parametric downconversion (SPDC). This method constitutes a novel geometry for SPDC, in which a radially polarized Bessel-Gauss pump beam is directed into a nonlinear crystal, with the central propagation direction parallel to the crystal axis. The phasematching conditions are controlled by changing the opening angle of the pump beam; as the crystal axis cannot be tuned, we refer to this process as super-critical phasematching. We model and plot the spatial and polarization output distributions for Type-I and Type-II super-critical phasematching.

9.
Phys Rev Lett ; 112(7): 070405, 2014 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-24579574

RESUMEN

In 1945, Dirac attempted to develop a "formal probability" distribution to describe quantum operators in terms of two noncommuting variables, such as position x and momentum p [Rev. Mod. Phys. 17, 195 (1945)]. The resulting quasiprobability distribution is a complete representation of the quantum state and can be observed directly in experiments. We measure Dirac's distribution for the quantum state of the transverse degree of freedom of a photon by weakly measuring transverse x so as to not randomize the subsequent p measurement. Furthermore, we show that the distribution has the classical-like feature that it transforms (e.g., propagates) according to Bayes' law.

10.
Phys Rev Lett ; 108(7): 070402, 2012 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-22401180

RESUMEN

Recent work by Lundeen et al. [Nature (London) 474, 188 (2011)] directly measured the wave function by weakly measuring a variable followed by a normal (i.e., "strong") measurement of the complementary variable. We generalize this method to mixed states by considering the weak measurement of various products of these observables, thereby providing the density matrix an operational definition in terms of a procedure for its direct measurement. The method only requires measurements in two bases and can be performed in situ, determining the quantum state without destroying it.

11.
Opt Express ; 19(22): 21305-12, 2011 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-22108981

RESUMEN

Single Photon Detectors are integral to quantum optics and quantum information. Superconducting Nanowire based detectors exhibit new levels of performance, but have no accepted quantum optical model that is valid for multiple input photons. By performing Detector Tomography, we improve the recently proposed model [M.K. Akhlaghi and A.H. Majedi, IEEE Trans. Appl. Supercond. 19, 361 (2009)] and also investigate the manner in which these detectors respond nonlinearly to light, a valuable feature for some applications. We develop a device independent model for Single Photon Detectors that incorporates this nonlinearity.

12.
Nat Commun ; 12(1): 3512, 2021 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-34112771

RESUMEN

Centuries of effort to improve imaging has focused on perfecting and combining lenses to obtain better optical performance and new functionalities. The arrival of nanotechnology has brought to this effort engineered surfaces called metalenses, which promise to make imaging devices more compact. However, unaddressed by this promise is the space between the lenses, which is crucial for image formation but takes up by far the most room in imaging systems. Here, we address this issue by presenting the concept of and experimentally demonstrating an optical 'spaceplate', an optic that effectively propagates light for a distance that can be considerably longer than the plate thickness. Such an optic would shrink future imaging systems, opening the possibility for ultra-thin monolithic cameras. More broadly, a spaceplate can be applied to miniaturize important devices that implicitly manipulate the spatial profile of light, for example, solar concentrators, collimators for light sources, integrated optical components, and spectrometers.

13.
Rev Sci Instrum ; 89(2): 023108, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29495806

RESUMEN

We present designs for variably polarizing beam splitters. These are beam splitters allowing the complete and independent control of the horizontal and vertical polarization splitting ratios. They have quantum optics and quantum information applications, such as quantum logic gates for quantum computing and non-local measurements for quantum state estimation. At the heart of each design is an interferometer. We experimentally demonstrate one particular implementation, a displaced Sagnac interferometer configuration, that provides an inherent instability to air currents and vibrations. Furthermore, this design does not require any custom-made optics but only common components which can be easily found in an optics laboratory.

14.
Phys Rev Lett ; 102(8): 080404, 2009 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-19257725

RESUMEN

We report an optical detector with tunable positive operator-valued measures. The device is based on a combination of weak-field homodyne techniques and photon-number-resolving detection. The resulting positive operator-valued measures can be continuously tuned from Fock-state projectors to a variety of phase-dependent quantum-state measurements by adjusting different system parameters such as local oscillator coupling, amplitude, and phase, allowing thus not only detection but also preparation of exotic quantum states. Experimental tomographic reconstructions of classical benchmark states are presented as a demonstration of the detector capabilities.

15.
Phys Rev Lett ; 102(12): 123603, 2009 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-19392276

RESUMEN

We experimentally control the spectral structure of photon pairs created via spontaneous four-wave mixing in microstructured fibers. By fabricating fibers with designed dispersion, one can manipulate the photons' wavelengths, joint spectrum, and, thus, entanglement. As an example, we produce photon pairs with no spectral correlations, allowing direct heralding of single photons in pure-state wave packets without filtering. We achieve an experimental purity of (85.9+/-1.6)%, while theoretical analysis and preliminary tests suggest that 94.5% purity is possible with a much longer fiber.

16.
Phys Rev Lett ; 100(13): 133601, 2008 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-18517952

RESUMEN

We present an experimental demonstration of heralded single photons prepared in pure quantum states from a parametric down-conversion source. It is shown that, through controlling the modal structure of the photon pair emission, one can generate pairs in factorable states and thence eliminate the need for spectral filters in multiple-source interference schemes. Indistinguishable heralded photons were generated in two independent spectrally engineered sources and Hong-Ou-Mandel interference observed between them without spectral filters. The measured visibility of 94.4% sets a minimum bound on the mean photon purity.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA