Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Arch Biochem Biophys ; 485(1): 35-40, 2009 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-19388147

RESUMEN

Methionine sulfoxide (MetO) is a common posttranslational modification to proteins occurring in vivo.These modifications are prevalent when reactive oxygen species levels are increased. To enable the detection of MetO in pure and extracted proteins from various sources, we have developed novel antibodies that can recognize MetO-proteins. These antibodies are polyclonal antibodies raised against an oxidized methionine-rich zein protein (MetO-DZS18) that are shown to recognize methionine oxidation in pure proteins and mouse and yeast extracts. Furthermore, mouse serum albumin and immunoglobulin (IgG)were shown to accumulate MetO as function of age especially in serums of methionine sulfoxide reductase A knockout mice. Interestingly, high levels of methionine-oxidized IgG in serums of subjects diagnosed with Alzheimer's disease were detected by western blot analysis using these antibodies. It is suggested that anti-MetO-DZS18 antibodies can be applied in the identification of proteins that undergo methionine oxidation under oxidative stress, aging, or disease state conditions.


Asunto(s)
Anticuerpos/inmunología , Extractos Celulares/química , Metionina/análogos & derivados , Proteínas/química , Suero/química , Envejecimiento , Animales , Especificidad de Anticuerpos , Proteínas Sanguíneas/química , Humanos , Metionina/análisis , Metionina/sangre , Metionina/inmunología , Metionina/metabolismo , Oxidación-Reducción , Estrés Oxidativo , Priones/química , Proteínas/inmunología
2.
Neurosci Lett ; 468(1): 38-41, 2010 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-19854239

RESUMEN

Oxidative stress is associated with the aging process, a risk factor for neurodegenerative diseases, and decreased by reduced energy intake. Oxidative modifications can affect protein function; the sulfur-containing amino acids, including methionine, are particularly susceptible to oxidation. A methionine sulfoxide can be enzymatically reduced by the methionine sulfoxide reductase (Msr) system. Previously, we have shown that MsrA(-/-) mice exhibit altered locomotor activity and brain dopamine levels as function of age. Previous studies have demonstrated that a caloric restriction enhances antioxidant defense and reduces the action of reactive oxygen species. Here we examine locomotor behavior and dopamine levels of MsrA(-/-) mice after caloric restriction starting at eight months of age and ending at 17 months. The MsrA(-/-) mice did not have any significant difference in spontaneous distance traveled when compared to controls at 17 months of age. In contrast, our previous report showed decreased locomotor activity in the MsrA(-/-) mice at 12 months of age and older when fed ad-libitum. After completion of the caloric restriction diet, dopamine levels were comparable to control mice. This differs from the abnormal dopamine levels previously observed in MsrA(-/-) mice fed ad-libitum. Thus, caloric restriction had a neutralization effect on MsrA ablation. In summary, it is suggested that caloric restriction alleviates abnormal locomotor activity and dopamine levels in the brain of the methionine sulfoxide reductase A knockout mouse.


Asunto(s)
Encéfalo/metabolismo , Restricción Calórica , Dopamina/metabolismo , Actividad Motora , Oxidorreductasas/genética , Envejecimiento/metabolismo , Animales , Metionina Sulfóxido Reductasas , Ratones , Ratones Noqueados , Estrés Oxidativo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA