RESUMEN
P-glycoprotein (P-gp) over-expression is a key factor in multi-drug resistance (MDR), which is a major factor in the failure of cancer treatment. P-gp inhibitors have been demonstrated to have powerful pharmacological properties and may be used as a therapeutic approach to overcome the MDR in cancer cells. Combining clinical investigations with biochemical and computational research may potentially lead to a clearer understanding of the pharmacological properties and the mechanisms of action of these P-gp inhibitors. The task of turning these discoveries into effective therapeutic candidates for a variety of malignancies, including resistant and metastatic kinds, falls on medicinal chemists. A variety of P-gp inhibitors with great potency, high selectivity, and minimal toxicity have been identified in recent years. The latest advances in drug design, characterization, structure-activity relationship (SAR) research, and modes of action of newly synthesized, powerful small molecules P-gp inhibitors over the previous ten years are highlighted in this review. P-gp transporter over-expression has been linked to MDR, therefore the development of P-gp inhibitors will expand our understanding of the processes and functions of P-gp-mediated drug efflux, which will be helpful for drug discovery and clinical cancer therapies.
Asunto(s)
Antineoplásicos , Antineoplásicos/farmacología , Antineoplásicos/química , Resistencia a Antineoplásicos , Relación Estructura-Actividad , Resistencia a Múltiples Medicamentos , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/metabolismo , Subfamilia B de Transportador de Casetes de Unión a ATPRESUMEN
Nieuwland catalyst is a key step in the dimerization of acetylene. Various zirconium metal additives incorporating Nieuwland catalysts were prepared, and their catalytic performances were assessed in acetylene dimerization. Different characterization techniques (i.e., thermogravimetric analysis, temperature-programmed reduction, X-ray diffraction, X-ray photoelectron spectroscopy, hydrogen ion concentration measurement and transmission electron microscopy) were employed in this study. The best catalytic performance was obtained over zirconium-acetylacetonate-incorporated Nieuwland catalysts, with an acetylene conversion of 53.3% and a monovinylacetylene selectivity of 87.4%. Based on these results, the zirconium acetylacetonate additive could reduce the types of transition state complexes, and it could also change the morphology of the catalyst. In addition, the additives could significantly inhibit the occurrence of trimerization products and polymers. Hence, the conversion of acetylene, monovinylacetylene selectivity, and stability of the Nieuwland catalysts were enhanced.
RESUMEN
Single-atom catalysts (SACs) have received much attention in the realm of energy and catalytic conversion due to their maximum atomic efficiency. Herein, we report a cascade anchoring strategy for the preparation of a Cu-S1O2 species of single-atom catalyst attached to a carbon carrier containing P and S (Cu-S1O2 SA/CPS) with a content of 12.4 wt%. Over the Cu-S1O2 SA/CPS catalyst, the conversion of 95.8% and selectivity of 87.2% for acetylene hydration could still be achieved at 70 h (T = 200°C, GHSV(C2H2) = 90 h-1 and VH2O/VC2H2 = 4). X-ray absorption spectroscopy (XAS) and X-ray photoelectron spectroscopy (XPS) tests reveal that the Cu atoms of Cu-S1O2 SA/CPS are predominantly coordinated in a trinary manner (Cu-S1O2). Based on high-resolution aberration-corrected high-angle annular dark-field scanning transmission electron microscope (HAADF-STEM), it is demonstrated that the Cu single-atom sites are highly dispersed in Cu-S1O2 SA/CPS. It is evident from the scanning electron microscopy (SEM) that Cu-S1O2 SA/CPS has a two-dimensional layered structure. The specific structure of the active site Cu is primarily attributed to the coordination of S and O atoms, resulting in its superior stability for acetylene hydration towards the synthesis of acetaldehyde. Density functional theory (DFT) calculations confirm that the formation of the Cu-S1O2 site facilitates the activation of acetylene, which is a pivotal step in the acetylene hydration process and considered as the rate-determining step. This article not only introduces an innovative strategy in the synthesis of Cu SACs but also represents a significant breakthrough in the stability of Cu SACs in acetylene hydration.