Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Pak J Med Sci ; 39(2): 444-449, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36950412

RESUMEN

Objective: To evaluate the clinical efficacy of a chemotherapy regimen combined with levofloxacin in patients with pulmonary tuberculosis complicated with Type-2 diabetes. Methods: Total 80 patients with pulmonary tuberculosis complicated with Type-2 diabetes admitted to Baoding People's Hospital from January, 2019 to January, 2022 were randomly divided into two groups: the experimental group and the control group, with 40 cases in each group. Patients in the control group were given the conventional 2HRZE/10HRE regimen, while those in the experimental group were given the chemotherapy regimen 2HRZEL/6HRE combined with levofloxacin. Sixty four slice spiral CT was used for chest plain scan before and after treatment, respectively, to evaluate the absorption of lesions based on the range of lung lesions; Venous blood was drawn to detect the changes of oxidative stress indicators, the incidence of adverse drug reactions and the negative conversion rate of sputum tuberculosis bacteria in the two groups. Results: After treatment, the efficacy of the experimental group was 90%, which was significantly higher than that of the control group (67.5%), with a statistically significant difference (p=0.01). After treatment, CD3+, CD4+, CD4+/CD8+ and other indicators in the experimental group were significantly higher than those in the control group, with a statistically significant difference (CD3+, p=0.01; CD4+, p=0.01; CD4+/CD8+, p=0.00), while CD8+ did not change significantly (p=0.92); The incidence of adverse reactions was 52.5% in the experimental group and 47.5% in the control group, with no statistically significant difference (p=0.66); The negative conversion rate of patients in the experimental group was significantly higher than that in the control group at one month, three months and six months after treatment, with a statistically significant difference (p<0.05). Conclusion: Chemotherapy combined with levofloxacin is a safe and effective regimen for patients' pulmonary tuberculosis complicated with Type-2 diabetes, boasting a variety of benefits such as improved clinical efficacy, ameliorated cellular immune status, a high negative conversion rate of sputum tuberculosis bacteria, and no significant increase in adverse reactions.

2.
Pak J Med Sci ; 38(1): 179-184, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35035422

RESUMEN

OBJECTIVE: To observe the clinical efficacy of thymosin alpha 1 (Tα1) combined with multi-modality chemotherapy in patients with pulmonary tuberculosis (PTB) complicated with diabetes and discuss the effects of such combination therapy on lymphocyte subsets and sputum levels of cytokines. METHODS: A total of 120 patients with PTB complicated with diabetes admitted to the Affiliated Hospital of North China University of Science and Technology from January 2017 to January 2018 were included in this study and randomly divided into an experimental group (Tα1 group, n=60) and a control group (n=60). Clinical efficacy and adverse drug reactions were observed and compared between the two groups. Blood samples were collected for lymphocyte (NK cell and T cell subsets) levels by flow cytometry, and sputum samples were collected for cytokine (IL-2, IFN-γ, IL-4 and TNF-α) levels by ELISA. RESULTS: Two groups showed no statistically significant difference in sputum culture-negative conversion rate, chest lesion absorption rate, and cavity closure rate (P>0.05) after 6 months of treatment. However, after 12 months, the sputum culture-negative conversion rate, chest lesion absorption rate, and cavity closure rate in the Tα1 group increased compared with the control group, and the differences were statistically significant (P<0.05). There was a significant increase in CD3+, CD4+, NK-cells lymphocytes after six months in the Tα1 group than in the control group, whereas the CD8+, Th17, Treg lymphocytes in the Tα1 group were substantially lower than in the control group, with the differences showing statistical significance (P<0.05, respectively). After six months of treatment, the sputum supernatant levels of interleukin-4 (IL-4) and tumor necrosis factor α (TNF-α) in the Tα1 group were lower than in the control group, whereas the sputum supernatant levels of interleukin-2 (IL-2) and interferon gamma (IFN-γ) in the Tα1 group were higher than in the control group, and the differences were statistically significant (P<0.05, respectively). There was no statistically significant difference in the incidence of adverse reactions between the two groups (P>0.05). CONCLUSION: Tα1 combined with multi-modality chemotherapy has a visible curative effect on PTB patients with diabetes as it can regulate immune function and reduce the levels of inflammatory cytokines. As a safe combination therapy, it seems promising for further use in clinical practice.

3.
World J Gastroenterol ; 30(1): 91-107, 2024 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-38293320

RESUMEN

BACKGROUND: The pathogenicity of Helicobacter pylori is dependent on factors including the environment and the host. Although selenium is closely related to pathogenicity as an environmental factor, the specific correlation between them remains unclear. AIM: To investigate how selenium acts on virulence factors and reduces their toxicity. METHODS: H. pylori strains were induced by sodium selenite. The expression of cytotoxin-associated protein A (CagA) and vacuolating cytotoxin gene A (VacA) was determined by quantitative PCR and Western blotting. Transcriptomics was used to analyze CagA, CagM, CagE, Cag1, Cag3, and CagT. C57BL/6A mice were infected with the attenuated strains subjected to sodium selenite induction, and H. pylori colonization, inflammatory reactions, and the cell adhesion ability of H. pylori were assessed. RESULTS: CagA and VacA expression was upregulated at first and then downregulated in the H. pylori strains after sodium selenite treatment. Their expression was significantly and steadily downregulated after the 5th cycle (10 d). Transcriptome analysis revealed that sodium selenite altered the levels affect H. pylori virulence factors such as CagA, CagM, CagE, Cag1, Cag3, and CagT. Of these factors, CagM and CagE expression was continuously downregulated and further downregulated after 2 h of induction with sodium selenite. Moreover, CagT expression was upregulated before the 3rd cycle (6 d) and significantly downregulated after the 5th cycle. Cag1 and Cag3 expression was upregulated and downregulated, respectively, but no significant change was observed by the 5th cycle. C57BL/6A mice were infected with the attenuated strains subjected to sodium selenite induction. The extent of H. pylori colonization in the stomach increased; however, sodium selenite also induced a mild inflammatory reaction in the gastric mucosa of H. pylori-infected mice, and the cell adhesion ability of H. pylori was significantly weakened. CONCLUSION: These results demonstrate that H. pylori displayed virulence attenuation after the 10th d of sodium selenite treatment. Sodium selenite is a low toxicity compound with strong stability that can reduce the cell adhesion ability of H. pylori, thus mitigating the inflammatory damage to the gastric mucosa.


Asunto(s)
Infecciones por Helicobacter , Helicobacter pylori , Selenio , Animales , Ratones , Antígenos Bacterianos/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Factores de Virulencia/genética , Factores de Virulencia/metabolismo , Selenito de Sodio/farmacología , Ratones Endogámicos C57BL , Citotoxinas , Infecciones por Helicobacter/metabolismo
4.
ACS Appl Mater Interfaces ; 15(30): 36280-36288, 2023 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-37467491

RESUMEN

Room-temperature photocatalytic conversion of CH4 into liquid oxygenates with O2/H2O provides an appealing route for sustainable chemical industry, which, however, suffers from poor efficiency due to the undesired carrier kinetics and low yield of reactive oxygen species of the currently available photocatalysts. Here, we report an effective surface engineering strategy where concurrent constructions of oxygen vacancies and phosphate sites on TiO2 nanosheets address the above challenge. The surface oxygen vacancies and phosphates are respective acceptors of photogenerated electrons and holes for promoted separation and migration of charge carriers. Moreover, in addition to the facilitated activation of O2 to •OH by electrons at oxygen vacancies, the surface phosphates also facilely adsorb H2O via hydrogen bonds and thus effectively transfer holes to H2O for enhanced •OH production, thereby boosting CH4 conversion. As a result, compared with TiO2 sheets with only oxygen vacancies, a 2.8 times improvement in liquid oxygenate production with near-unity selectivity is achieved by virtue of the synergy of surface oxygen vacancies and phosphate sites, together with an unprecedent quantum efficiency of 19.8% under 365 nm irradiation.

5.
ACS Appl Mater Interfaces ; 14(18): 21069-21078, 2022 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-35485932

RESUMEN

Solar energy-driven direct CH4 conversion to liquid oxygenates provides a promising avenue toward green and sustainable CH4 industry, yet still confronts issues of low selectivity toward single oxygenate and use of noble-metal cocatalysts. Herein, for the first time, we report a defect-engineering strategy that rationally regulates the defective layer over TiO2 for selective aerobic photocatalytic CH4 conversion to HCHO without using noble-metal cocatalysts. (Photo)electrochemical and in situ EPR/Raman spectroscopic measurements reveal that an optimized oxygen-vacancy-rich surface disorder layer with a thickness of 1.37 nm can simultaneously promote the separation and migration of photogenerated charge carriers and enhance the activation of O2 and CH4, respectively, to •OH and •CH3 radicals, thereby synergistically boosting HCHO production in aerobic photocatalytic CH4 conversion. As a result, a HCHO production rate up to 3.16 mmol g-1 h-1 with 81.2% selectivity is achieved, outperforming those of the reported state-of-the-art photocatalytic systems. This work sheds light on the mechanism of O2-participated photocatalytic CH4 conversion on defective metal oxides and expands the application of defect engineering in designing low-cost and efficient photocatalysts.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA