Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Asunto principal
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(19)2023 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-37833996

RESUMEN

The extensive use of fossil fuels and global climate change have raised ever-increasing attention to sustainable development, global food security and the replacement of fossil fuels by renewable energy. Several C4 monocot grasses have excellent photosynthetic ability, stress tolerance and may rapidly produce biomass in marginal lands with low agronomic inputs, thus representing an important source of bioenergy. Among these grasses, Sorghum bicolor has been recognized as not only a promising bioenergy crop but also a research model due to its diploidy, simple genome, genetic diversity and clear orthologous relationship with other grass genomes, allowing sorghum research to be easily translated to other grasses. Although sorghum molecular genetic studies have lagged far behind those of major crops (e.g., rice and maize), recent advances have been made in a number of biomass-related traits to dissect the genetic loci and candidate genes, and to discover the functions of key genes. However, molecular and/or targeted breeding toward biomass-related traits in sorghum have not fully benefited from these pieces of genetic knowledge. Thus, to facilitate the breeding and bioenergy applications of sorghum, this perspective summarizes the bioenergy applications of different types of sorghum and outlines the genetic control of the biomass-related traits, ranging from flowering/maturity, plant height, internode morphological traits and metabolic compositions. In particular, we describe the dynamic changes of carbohydrate metabolism in sorghum internodes and highlight the molecular regulators involved in the different stages of internode carbohydrate metabolism, which affects the bioenergy utilization of sorghum biomass. We argue the way forward is to further enhance our understanding of the genetic mechanisms of these biomass-related traits with new technologies, which will lead to future directions toward tailored designing sorghum biomass traits suitable for different bioenergy applications.


Asunto(s)
Sorghum , Sorghum/genética , Sorghum/metabolismo , Biomasa , Fitomejoramiento , Poaceae/genética , Poaceae/metabolismo , Grano Comestible , Combustibles Fósiles
2.
Polymers (Basel) ; 10(9)2018 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-30960949

RESUMEN

Well-defined functionalized sisal cellulose fibers (SCFs) grafted on hyperbranched liquid crystals (HLP) were synthesized to improve the compatibility between SCFs and epoxy resin (EP). The influence of SCFs-HLP on the mechanical and thermal properties of SCFs-HLP/EP composites was studied. The results show that the mechanical properties of SCFs-HLP/EP composites were enhanced distinctly. Particularly, compared with EP, impact strength, tensile strength, and flexural strength of composites with 4.0 wt % SCFs-HLP were 38.3 KJ·m-2, 86.2 MPa, and 150.7 MPa, increasing by 118.7%, 55.6%, and 89.6%, respectively. As well, the glass transition temperature of the composite material increased by 25 °C. It is hope that this work will inform ongoing efforts to exploit more efficient methods to overcome the poor natural fiber/polymer adhesion in the interface region.

3.
Carbohydr Polym ; 179: 110-117, 2018 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-29111033

RESUMEN

A novel water-induced shape memory nanocomposites were prepared by introducing graphene oxide (GO), which was based on microcrystalline cellulose nanofibers (MSF-g-COOH) extracting from sisal fibers. The results showed that the water-induced shape memory properties of MSF-g-COOH were significantly improved by the strong hydrogen bonding interaction between MSF-g-COOH and GO, It leads to some additional physically cross-linked points in MSF-g-COOH. On the other hand, at 0.5wt% GO loading, tensile strength and Young modulus of the nanocomposite increased from 139 to 184MPa, and from 5.77 to 8.54GPa, respectively, compared to those of pure MSF-g-COOH. Furthermore, a water-induced model was proposed to discuss the water-induced shape memory behaviors of the MSF-g-COOH/GO nanocomposites. This study provides a framework for developing a cellulose based shape memory polymers (CSMPs) and better understanding the shape recovery mechanism in water-induced CSMPs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA