Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Adv Mater ; 36(19): e2312311, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38305577

RESUMEN

The exploration of high-performance and low-cost wide-bandgap polymer donors remains critical to achieve high-efficiency nonfullerene organic solar cells (OSCs) beyond current thresholds. Herein, the 1,2,3-benzothiadiazole (iBT), which is an isomer of 2,1,3-benzothiadiazole (BT), is used to design wide-bandgap polymer donor PiBT. The PiBT-based solar cells reach efficiency of 19.0%, which is one of the highest efficiencies in binary OSCs. Systemic studies show that isomerization of BT to iBT can finely regulate the polymers' photoelectric properties including i) increasing the extinction coefficient and photon harvest, ii) downshifting the highest occupied molecular orbital energy levels, iii) improving the coplanarity of polymer backbones, iv) offering good thermodynamic miscibility with acceptors. Consequently, the PiBT:Y6 bulk heterojunction (BHJ) device simultaneously reaches advantageous nanoscale morphology, efficient exciton generation and dissociation, fast charge transportation, and suppressed charge recombination, leading to larger VOC of 0.87 V, higher JSC of 28.2 mA cm-2, greater fill factor of 77.3%, and thus higher efficiency of 19.0%, while the analog-PBT-based OSCs reach efficiency of only 12.9%. Moreover, the key intermediate iBT can be easily afforded from industry chemicals via two-step procedure. Overall, this contribution highlights that iBT is a promising motif for designing high-performance polymer donors.

2.
Adv Mater ; : e2407271, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39081083

RESUMEN

Near-infrared (NIR) organic photodetectors (OPDs), particularly all-polymer-based ones, hold substantial commercial promise in the healthcare and imaging sectors. However, the process of optimizing their active layer composition to achieve highly competitive figures of merit lacks a clear direction and methodology. In this work, celebrity polymer acceptor PY-IT into a more NIR absorbing host system PBDB-T:PZF-V, to significantly enhance the photodetection competence, is introduced. The refined all-polymer ternary broadband photodetector demonstrates superior performance metrics, including experimentally measured noise current as low as 6 fA Hz-1/2, specific detectivity reaching 8 × 1012 Jones, linear dynamic range (LDR) of 145 dB, and swift response speed surpassing 200 kHz, striking a fair balance between sensitivity and response speed. Comprehensive morphological and photophysical characterizations elucidate the mechanisms behind the observed performance enhancements in this study, which include reduced trap density, enhanced charge transport, diminished charge recombination, and balanced electron/hole mobilities. Moreover, the practical deployment potential of the proof-of-concept device in self-powered mode is demonstrated through their application in a machine learning-based cuffless blood pressure (BP) estimation system and in high-resolution computational imaging across complex environments, where they are found to quantitatively rival commercial silicon diodes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA