Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Asunto principal
Tipo de estudio
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-38905086

RESUMEN

As a crucial step toward real-world learning scenarios with changing environments, dataset shift theory and invariant representation learning algorithm have been extensively studied to relax the identical distribution assumption in classical learning setting. Among the different assumptions on the essential of shifting distributions, generalized label shift (GLS) is the latest developed one which shows great potential to deal with the complex factors within the shift. In this paper, we aim to explore the limitations of current dataset shift theory and algorithm, and further provide new insights by presenting a comprehensive understanding of GLS. From theoretical aspect, two informative generalization bounds are derived, and the GLS learner are proved to be sufficiently close to optimal target model from the Bayesian perspective. The main results show the insufficiency of invariant representation learning, and prove the sufficiency and necessity of GLS correction for generalization, which provide theoretical supports and innovations for exploring generalizable model under dataset shift. From methodological aspect, we provide a unified view of existing shift correction frameworks, and propose a kernel embedding-based correction algorithm (KECA) to minimize the generalization error and achieve successful knowledge transfer. Both theoretical results and extensive experiment evaluations demonstrate the sufficiency and necessity of GLS correction for addressing dataset shift and the superiority of proposed algorithm.

2.
Artículo en Inglés | MEDLINE | ID: mdl-38861431

RESUMEN

To overcome the restriction of identical distribution assumption, invariant representation learning for unsupervised domain adaptation (UDA) has made significant advances in computer vision and pattern recognition communities. In UDA scenario, the training and test data belong to different domains while the task model is learned to be invariant. Recently, empirical connections between transferability and discriminability have received increasing attention, which is the key to understand the invariant representations. However, theoretical study of these abilities and in-depth analysis of the learned feature structures are unexplored yet. In this work, we systematically analyze the essentials of transferability and discriminability from the geometric perspective. Our theoretical results provide insights into understanding the co-regularization relation and prove the possibility of learning these abilities. From methodology aspect, the abilities are formulated as geometric properties between domain/cluster subspaces (i.e., orthogonality and equivalence) and characterized as the relation between the norms/ranks of multiple matrices. Two optimization-friendly learning principles are derived, which also ensure some intuitive explanations. Moreover, a feasible range for the co-regularization parameters is deduced to balance the learning of geometric structures. Based on the theoretical results, a geometry-oriented model is proposed for enhancing the transferability and discriminability via nuclear norm optimization. Extensive experiment results validate the effectiveness of the proposed model in empirical applications, and verify that the geometric abilities can be sufficiently learned in the derived feasible range.

3.
IEEE Trans Pattern Anal Mach Intell ; 45(4): 4198-4213, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35830411

RESUMEN

As a fundamental manner for learning and cognition, transfer learning has attracted widespread attention in recent years. Typical transfer learning tasks include unsupervised domain adaptation (UDA) and few-shot learning (FSL), which both attempt to sufficiently transfer discriminative knowledge from the training environment to the test environment to improve the model's generalization performance. Previous transfer learning methods usually ignore the potential conditional distribution shift between environments. This leads to the discriminability degradation in the test environments. Therefore, how to construct a learnable and interpretable metric to measure and then reduce the gap between conditional distributions is very important in the literature. In this article, we design the Conditional Kernel Bures (CKB) metric for characterizing conditional distribution discrepancy, and derive an empirical estimation with convergence guarantee. CKB provides a statistical and interpretable approach, under the optimal transportation framework, to understand the knowledge transfer mechanism. It is essentially an extension of optimal transportation from the marginal distributions to the conditional distributions. CKB can be used as a plug-and-play module and placed onto the loss layer in deep networks, thus, it plays the bottleneck role in representation learning. From this perspective, the new method with network architecture is abbreviated as BuresNet, and it can be used extract conditional invariant features for both UDA and FSL tasks. BuresNet can be trained in an end-to-end manner. Extensive experiment results on several benchmark datasets validate the effectiveness of BuresNet.

4.
IEEE Trans Pattern Anal Mach Intell ; 44(3): 1653-1669, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-32749963

RESUMEN

Unsupervised domain adaptation is effective in leveraging rich information from a labeled source domain to an unlabeled target domain. Though deep learning and adversarial strategy made a significant breakthrough in the adaptability of features, there are two issues to be further studied. First, hard-assigned pseudo labels on the target domain are arbitrary and error-prone, and direct application of them may destroy the intrinsic data structure. Second, batch-wise training of deep learning limits the characterization of the global structure. In this paper, a Riemannian manifold learning framework is proposed to achieve transferability and discriminability simultaneously. For the first issue, this framework establishes a probabilistic discriminant criterion on the target domain via soft labels. Based on pre-built prototypes, this criterion is extended to a global approximation scheme for the second issue. Manifold metric alignment is adopted to be compatible with the embedding space. The theoretical error bounds of different alignment metrics are derived for constructive guidance. The proposed method can be used to tackle a series of variants of domain adaptation problems, including both vanilla and partial settings. Extensive experiments have been conducted to investigate the method and a comparative study shows the superiority of the discriminative manifold learning framework.


Asunto(s)
Algoritmos
5.
Artículo en Inglés | MEDLINE | ID: mdl-31765312

RESUMEN

Image set recognition has been widely applied in many practical problems like real-time video retrieval and image caption tasks. Due to its superior performance, it has grown into a significant topic in recent years. However, images with complicated variations, e.g., postures and human ages, are difficult to address, as these variations are continuous and gradual with respect to image appearance. Consequently, the crucial point of image set recognition is to mine the intrinsic connection or structural information from the image batches with variations. In this work, a Discriminant Residual Analysis (DRA) method is proposed to improve the classification performance by discovering discriminant features in related and unrelated groups. Specifically, DRA attempts to obtain a powerful projection which casts the residual representations into a discriminant subspace. Such a projection subspace is expected to magnify the useful information of the input space as much as possible, then the relation between the training set and the test set described by the given metric or distance will be more precise in the discriminant subspace. We also propose a nonfeasance strategy by defining another approach to construct the unrelated groups, which help to reduce furthermore the cost of sampling errors. Two regularization approaches are used to deal with the probable small sample size problem. Extensive experiments are conducted on benchmark databases, and the results show superiority and efficiency of the new methods.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA