Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Pest Manag Sci ; 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38619050

RESUMEN

BACKGROUND: Leaf feeders, such as Spodoptera frugiperda and Spodoptera litura, and stem borers Ostrinia furnacalis and Chilo suppressalis, occupy two different niches and are well adapted to their particular environments. Borer larvae burrow and inhabit the interior of stems, which are relatively dark. By contrast, the larvae of leaf feeders are exposed to sunlight during feeding. We therefore designed series of experiments to evaluate the effect of light intensity (0, 2000, and 10 000 lx) on these pests with different feeding modes. RESULTS: The development of all four pests was significantly delayed at 0 lx. Importantly, light intensity affected the development of both male and female larvae of borers, but only significantly affected male larvae of leaf feeders. Furthermore, the proportion of female offspring of leaf feeders increased with increasing light intensity (S. frugiperda: 33.89%, 42.26%, 57.41%; S. litura: 38.90%, 51.75%, 65.08%), but no significant differences were found in stem borers. This research also revealed that the survival rate of female leaf feeders did not vary across light intensities, but that of males decreased with increasing light intensity (S. frugiperda: 97.78%, 85.86%, 61.21%; S. litura: 95.83%, 73.54%, 58.99%). CONCLUSION: These results improve our understanding of how light intensity affects sex differences in important lepidopteran pests occupying different feeding niches and their ecological interactions with abiotic factors in agroecosystems. © 2024 Society of Chemical Industry.

2.
J Hazard Mater ; 469: 133937, 2024 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-38460259

RESUMEN

This study examined the effectiveness of pristine biochar (BC) and Fe-functionalized biochar (FBC) in remediating As-Sb co-contaminated soil, and revealed the resulting impact on soil enzymatic activities and bacterial communities. Results from incubation experiments showed that the 1.5% FBC treatment reduced the bioavailable As and Sb concentration by 13.5% and 27.1%, respectively, in compared to the control, and reduced the proportion of specifically adsorbed and amorphous Fe-Mn oxide-bound metal(loid) fractions in the treated soil. Among the BC treatments, only the 1.5% BC treatment resulted in a reduction of bioavailable As by 11.7% and Sb by 21.4%. The 0.5% BC treatment showed no significant difference. The FBC achieved high As/Sb immobilization efficiency through Fe-induced electrostatic attraction, π-π electron donor-acceptor coordination, and complexation (Fe-O(H)-As/Sb) mechanisms. Additionally, the 1.5% FBC treatment led to a 108.2% and 367.4% increase in the activities of N-acetyl-ß-glucosaminidase and urease in soils, respectively, compared to the control. Furthermore, it significantly increased the abundance of Proteobacteria (15.2%), Actinobacteriota (37.0%), Chloroflexi (21.4%), and Gemmatimonadota (43.6%) at the phylum level. Co-occurrence network analysis showed that FBC was better than BC in increasing the complexity of bacterial communities. Partial least squares path modeling further indicated that the addition of biochar treatments can affect soil enzyme activities by altering soil bacterial composition. This study suggests that FBC application offers advantages in simultaneous As and Sb immobilization and restructuring the bacterial community composition in metal(loid)-contaminated soil.


Asunto(s)
Arsénico , Contaminantes del Suelo , Antimonio , Arsénico/análisis , Contaminantes del Suelo/análisis , Carbón Orgánico , Bacterias , Suelo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA