Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
J Liposome Res ; : 1-12, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38379249

RESUMEN

The intricate cooperation between cancer cells and nontumor stromal cells within melanoma microenvironment (MME) enables tumor progression and metastasis. We previously demonstrated that the interplay between tumor-associated macrophages (TAMs) and melanoma cells can be disrupted by using long-circulating liposomes (LCLs) encapsulating prednisolone phosphate (PLP) (LCL-PLP) that inhibited tumor angiogenesis coordinated by TAMs. In this study, our goal was to improve LCL specificity for protumor macrophages (M2-like (i.e., TAMs) macrophages) and to induce a more precise accumulation at tumor site by loading PLP into IL-13-conjugated liposomes (IL-13-LCL-PLP), since IL-13 receptor is overexpressed in this type of macrophages. The IL-13-LCL-PLP liposomal formulation was obtained by covalent attachment of thiolated IL-13 to maleimide-functionalized LCL-PLP. C57BL/6 mice bearing B16.F10 s.c melanoma tumors were used to investigate the antitumor action of LCL-PLP and IL-13-LCL-PLP. Our results showed that IL-13-LCL-PLP formulation remained stable in biological fluids after 24h and it was preferentially taken up by M2 polarized macrophages. IL-13-LCL-PLP induced strong tumor growth inhibition compared to nonfunctionalized LCL-PLP at the same dose, by altering TAMs-mediated angiogenesis and oxidative stress, limiting resistance to apoptosis and invasive features in MME. These findings suggest IL-13-LCL-PLP might become a promising delivery platform for chemotherapeutic agents in melanoma.

2.
J Liposome Res ; 31(1): 1-10, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31631726

RESUMEN

The goal of the current study was to investigate the pharmacokinetic profile, tissue distribution and adverse effects of long-circulating liposomes (LCL) with curcumin (CURC) and doxorubicin (DOX), in order to provide further evidence for previously demonstrated enhanced antitumor efficacy in colon cancer models. The pharmacokinetic studies were carried out in healthy rats, following the i.v. injection of a single dose of LCL-CURC-DOX (1 mg/kg DOX). For the tissue distribution study, DOX concentration in tumours, heart and liver were measured after the administration of two i.v. doses of LCL-CURC-DOX (2.5 mg/kg DOX and 5 mg/kg CURC) to Balb/c mice bearing C26 colon tumours. Markers of murine cardiac and hepatic oxidative status were determined to provide additional insights into the benefit of co-encapsulating CURC and DOX in LCL over DOX-induced adverse effects in these organs. The current study demonstrated that the liposomal association of CURC and DOX effectively improved the pharmacokinetics and biodistribution of DOX, limiting its side effects, via CURC-dependent antioxidant effects.


Asunto(s)
Antibióticos Antineoplásicos/efectos adversos , Antibióticos Antineoplásicos/farmacocinética , Carcinoma/tratamiento farmacológico , Neoplasias del Colon/tratamiento farmacológico , Curcumina/química , Doxorrubicina/efectos adversos , Doxorrubicina/farmacocinética , Animales , Antibióticos Antineoplásicos/química , Cápsulas , Doxorrubicina/química , Liposomas/química , Masculino , Ratones , Ratones Endogámicos BALB C , Neoplasias Experimentales/tratamiento farmacológico , Tamaño de la Partícula , Ratas
3.
Cancer Sci ; 111(4): 1344-1356, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31960547

RESUMEN

5-Fluorouracil-based therapy remains the main approach in colorectal cancer, even though there are still some drawbacks, such as chemoresistance. In this study we combined 5-fluorouracil encapsulated in long-circulating liposomes with simvastatin, also encapsulated in long-circulating liposomes, that was previously proved to exert antitumor actions on the same tumor model. The production of angiogenic/inflammatory proteins was assessed by protein array and the production of markers for tumor aggressiveness (Bcl-2, Bax, and nuclear factor [NF]-κB) were determined by western blot analysis. Intratumor oxidative stress was evaluated through measurement of malondialdehyde level by HPLC, and through spectrophotometric analysis of catalytic activity of catalase and of total antioxidant capacity. Immunohistochemical analysis of tumors for CD31 expression was assessed. Intratumor activity of MMP-2 by gelatin zymography was also carried out. Our results revealed that combined therapies based on liposomal formulations exerted enhanced antitumor activities compared with combined treatment with free drugs. Sequential treatment with liposomal simvastatin and liposomal 5-fluorouracil showed the strongest antitumor activity in C26 colon carcinoma in vivo, mainly through inhibition of tumor angiogenesis. Important markers for cancer progression (Bcl-2, Bax, NF-κB, and intratumor antioxidants) showed that liposomal simvastatin might sensitize C26 cells to liposomal 5-fluorouracil treatment in both regimens tested. The outcome of simultaneous treatment with liposomal formulations was superior to sequential treatment with both liposomal types as the invasive capacity of C26 tumors was strongly increased after the latest treatment. The antitumor efficacy of combined therapy in C26 colon carcinoma might be linked to the restorative effects on proteins balance involved in tumor angiogenesis.


Asunto(s)
Carcinoma/tratamiento farmacológico , Neoplasias Colorrectales/tratamiento farmacológico , Neovascularización Patológica/tratamiento farmacológico , Simvastatina/farmacología , Animales , Apoptosis/efectos de los fármacos , Carcinoma/genética , Carcinoma/patología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Resistencia a Antineoplásicos/genética , Fluorouracilo/farmacología , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Liposomas/farmacología , Ratones , FN-kappa B/genética , Neovascularización Patológica/genética , Neovascularización Patológica/patología , Molécula-1 de Adhesión Celular Endotelial de Plaqueta/genética , Proteínas Proto-Oncogénicas c-bcl-2/genética , Ensayos Antitumor por Modelo de Xenoinjerto , Proteína X Asociada a bcl-2/genética
4.
Int J Mol Sci ; 21(8)2020 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-32340166

RESUMEN

Regardless of recent progress, melanoma is very difficult to treat, mainly due to the drug resistance modulated by tumor cells as well as by the tumor microenvironment (TME). Among the immune cells recruited at the tumor site, tumor associated macrophages (TAMs) are the most abundant, promoting important tumorigenic processes: angiogenesis, inflammation and invasiveness. Furthermore, it has been shown that TAMs are involved in mediating the drug resistance of melanoma cells. Thus, in the present study, we used liposomal formulation of prednisolone disodium phosphate (LCL-PLP) to inhibit the protumor function of TAMs with the aim to sensitize the melanoma cells to the cytotoxic drug doxorubicin (DOX) to which human melanoma has intrinsic resistance. Consequently, we evaluated the in vivo effects of the concomitant administration of LCL-PLP and liposomal formulation of DOX (LCL-DOX) on B16.F10 melanoma growth and on the production of key molecular markers for tumor development. Our results demonstrated that the concomitant administration of LCL-PLP and LCL-DOX induced a strong inhibition of tumor growth, primarily by inhibiting TAMs-mediated angiogenesis as well as the tumor production of MMP-2 and AP-1. Moreover, our data suggested that the combined therapy also affected TME as the number of infiltrated macrophages in melanoma microenvironment was reduced significantly.


Asunto(s)
Antineoplásicos/farmacología , Doxorrubicina/farmacología , Liposomas , Melanoma Experimental/metabolismo , Melanoma Experimental/patología , Neovascularización Patológica/metabolismo , Microambiente Tumoral/efectos de los fármacos , Animales , Antineoplásicos/administración & dosificación , Biomarcadores , Línea Celular Tumoral , Doxorrubicina/administración & dosificación , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Melanoma Experimental/tratamiento farmacológico , Ratones , Neovascularización Patológica/tratamiento farmacológico , Estrés Oxidativo , Prednisolona/administración & dosificación , Prednisolona/análogos & derivados
5.
J Liposome Res ; 28(1): 49-61, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-27788618

RESUMEN

Quality by design principles (QbD) were used to assist the formulation of prednisolone-loaded long-circulating liposomes (LCL-PLP) in order to gain a more comprehensive understanding of the preparation process. This approach enables us to improve the final product quality in terms of liposomal drug concentration, encapsulation efficiency and size, and to minimize preparation variability. A 19-run D-optimal experimental design was used to study the impact of the highest risk factors on PLP liposomal concentration (Y1- µg/ml), encapsulation efficiency (Y2-%) and size (Y3-nm). Out of six investigated factors, four of them were identified as critical parameters affecting the studied responses. PLP molar concentration and the molar ratio of DPPC to MPEG-2000-DSPE had a positive impact on both Y1 and Y2, while the rotation speed at the formation of the lipid film had a negative impact. Y3 was highly influenced by prednisolone molar concentration and extrusion temperature. The accuracy and robustness of the model was further on confirmed. The developed model was used to optimize the formulation of LCL-PLP for efficient accumulation of the drug to tumor tissue. The cytotoxicity of the optimized LCL-PLP on C26 murine colon carcinoma cells was assessed. LCL-PLP exerted significant anti-angiogenic and anti-inflammatory effects on M2 macrophages, affecting indirectly the C26 colon carcinoma cell proliferation and development.


Asunto(s)
Liposomas/química , Prednisolona/química , Inhibidores de la Angiogénesis/química , Inhibidores de la Angiogénesis/farmacología , Animales , Antiinflamatorios/química , Antiinflamatorios/farmacología , Línea Celular , Proliferación Celular , Supervivencia Celular , Preparaciones de Acción Retardada , Liberación de Fármacos , Humanos , Lípidos/química , Ratones , Tamaño de la Partícula , Polietilenglicoles/química , Prednisolona/farmacología , Propiedades de Superficie
6.
Plant Foods Hum Nutr ; 72(4): 404-410, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29129015

RESUMEN

Anthocyanins are water soluble pigments which have been proved to exhibit health benefits. Several studies have investigated their effects on several types of cancer, but little attention has been given to melanoma. The phytochemical content of nine different berry samples was assessed by liquid chromatography followed by electrospray ionization mass spectrometry (LC-ESI+-MS). Twenty-six anthocyanins were identified, after a previous C18 Sep-pak clean-up procedure. Chokeberry and red grape anthocyanins rich extracts (C-ARE and RG-ARE) were selected to be tested on normal and melanoma cell lines, due to their different chemical pattern. C-ARE composition consists of cyanidin aglycone glycosylated with different sugars; while RG-ARE contains glucosylated derivatives of five different aglycones. Both C-ARE and RG-ARE anthocyanins reduced proliferation, increased oxidative stress biomarkers and diminished mitochondrial membrane potential in melanoma cells, having no negative influence on normal cells. A synergistic response may be attributed to the five different aglycones present in RG-ARE, which proved to exert greater effects on melanoma cells than the mixture of cyanidin derivatives with different sugars (C-ARE). In conclusion, C-ARE and RG-ARE anthocyanins may inhibit melanoma cell proliferation and increase the level of oxidative stress, with opposite effect on normal cells. Therefore, anthocyanins might be recommended as active ingredients for cosmetic and nutraceutical industry. Graphical Abstract ᅟ.


Asunto(s)
Antocianinas/farmacología , Melanoma/tratamiento farmacológico , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Extractos Vegetales/farmacología , Animales , Antocianinas/análisis , Antineoplásicos Fitogénicos/química , Antineoplásicos Fitogénicos/farmacología , Línea Celular Tumoral , Humanos , Malondialdehído/metabolismo , Melanoma/patología , Ratones , Extractos Vegetales/química , Prunus/química , Vitis/química
7.
Front Pharmacol ; 13: 870347, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35450036

RESUMEN

Primary melanoma aggressiveness is determined by rapid selection and growth of cellular clones resistant to conventional treatments, resulting in metastasis and recurrence. In addition, a reprogrammed tumor-immune microenvironment supports melanoma progression and response to therapy. There is an urgent need to develop selective and specific drug delivery strategies for modulating the interaction between cancer cells and immune cells within the tumor microenvironment. This study proposes a novel combination therapy consisting of sequential administration of simvastatin incorporated in IL-13-functionalized long-circulating liposomes (IL-13-LCL-SIM) and doxorubicin encapsulated into PEG-coated extracellular vesicles (PEG-EV-DOX) to selectively target both tumor-associated macrophages and melanoma cells. To this end, IL-13 was conjugated to LCL-SIM which was obtained via the lipid film hydration method. EVs enriched from melanoma cells were passively loaded with doxorubicin. The cellular uptake of rhodamine-tagged nano-particles and the antiproliferative potential of the treatments by using the ELISA BrdU-colorimetric immunoassay were investigated in vitro. Subsequently, the therapeutic agents were administered i.v in B16.F10 melanoma-bearing mice, and tumor size was monitored during treatment. The molecular mechanisms of antitumor activity were investigated using angiogenic and inflammatory protein arrays and western blot analysis of invasion (HIF-1) and apoptosis markers (Bcl-xL and Bax). Quantification of oxidative stress marker malondialdehyde (MDA) was determined by HPLC. Immunohistochemical staining of angiogenic markers CD31 and VEGF and of pan-macrophage marker F4/80 was performed to validate our findings. The in vitro data showed that IL-13-functionalized LCL were preferentially taken up by tumor-associated macrophages and indicated that sequential administration of IL-13-LCL-SIM and PEG-EV-DOX had the strongest antiproliferative effect on tumor cells co-cultured with tumor-associated macrophages (TAMs). Accordingly, strong inhibition of tumor growth in the group treated with the sequential combination therapy was reported in vivo. Our data suggested that the antitumor action of the combined treatment was exerted through strong inhibition of several pro-angiogenic factors (VEGF, bFGF, and CD31) and oxidative stress-induced upregulation of pro-apoptotic protein Bax. This novel drug delivery strategy based on combined active targeting of both cancer cells and immune cells was able to induce a potent antitumor effect by disruption of the reciprocal interactions between TAMs and melanoma cells.

8.
Cancer Biol Ther ; 23(1): 1-16, 2022 12 31.
Artículo en Inglés | MEDLINE | ID: mdl-34964693

RESUMEN

Tailoring extracellular vesicles (EVs) as targeted drug delivery systems to enhance the therapeutic efficacy showed superior advantage over liposomal therapies. Herein, we developed a novel nanotool for targeting B16.F10 murine melanoma, based on EVs stabilized with Polyethylene glycol (PEG) and loaded with doxorubicin (DOX). Small EVs were efficiently enriched from melanoma cells cultured under metabolic stress by ultrafiltration coupled with size exclusion chromatography (UF-SEC) and characterized by size, morphology, and proteome. To reduce their clearance in vivo, EVs were PEGylated and passively loaded with DOX (PEG-EV-DOX). Our data suggested that the low PEG coverage of EVs might still favor EV surface protein interactions with target proteins from intratumor cells, ensuring their use as "Trojan horses" to deliver DOX to the tumor tissue. Moreover, our results showed a superior antitumor activity of PEG-EV-DOX in B16.F10 murine melanoma models in vivo compared to that exerted by clinically applied liposomal DOX in the same tumor model. The PEG-EV-DOX administration in vivo reduced NF-κB activation and increased BAX expression, suggesting better prognosis of EV-based therapy than liposomal DOX treatment. Collectively, our results highlight the promising potential of EVs as optimal tools for systemic delivery of DOX to solid tumors.


Asunto(s)
Vesículas Extracelulares , Melanoma Experimental , Animales , Línea Celular Tumoral , Doxorrubicina/farmacología , Doxorrubicina/uso terapéutico , Humanos , Melanoma Experimental/tratamiento farmacológico , Melanoma Experimental/patología , Ratones , Polietilenglicoles/uso terapéutico
9.
Sci Rep ; 11(1): 22102, 2021 11 11.
Artículo en Inglés | MEDLINE | ID: mdl-34764332

RESUMEN

Anti-angiogenic therapies for melanoma have not yet been translated into meaningful clinical benefit for patients, due to the development of drug-induced resistance in cancer cells, mainly caused by hypoxia-inducible factor 1α (HIF-1α) overexpression and enhanced oxidative stress mediated by tumor-associated macrophages (TAMs). Our previous study demonstrated synergistic antitumor actions of simvastatin (SIM) and 5,6-dimethylxanthenone-4-acetic acid (DMXAA) on an in vitro melanoma model via suppression of the aggressive phenotype of melanoma cells and inhibition of TAMs-mediated angiogenesis. Therefore, we took the advantage of long circulating liposomes (LCL) superior tumor targeting capacity to efficiently deliver SIM and DMXAA to B16.F10 melanoma in vivo, with the final aim of improving the outcome of the anti-angiogenic therapy. Thus, we assessed the effects of this novel combined tumor-targeted treatment on s.c. B16.F10 murine melanoma growth and on the production of critical markers involved in tumor development and progression. Our results showed that the combined liposomal therapy almost totally inhibited (> 90%) the growth of melanoma tumors, due to the enhancement of anti-angiogenic effects of LCL-DMXAA by LCL-SIM and simultaneous induction of a pro-apoptotic state of tumor cells in the tumor microenvironment (TME). These effects were accompanied by the partial re-education of TAMs towards an M1 phenotype and augmented by combined therapy-induced suppression of major invasion and metastasis promoters (HIF-1α, pAP-1 c-Jun, and MMPs). Thus, this novel therapy holds the potential to remodel the TME, by suppressing its most important malignant biological capabilities.


Asunto(s)
Liposomas/administración & dosificación , Melanoma Experimental/tratamiento farmacológico , Melanoma/tratamiento farmacológico , Simvastatina/farmacología , Neoplasias Cutáneas/tratamiento farmacológico , Microambiente Tumoral/efectos de los fármacos , Xantonas/farmacología , Inhibidores de la Angiogénesis/farmacología , Animales , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Progresión de la Enfermedad , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Masculino , Melanoma/metabolismo , Melanoma Experimental/metabolismo , Ratones , Ratones Endogámicos C57BL , Neovascularización Patológica/tratamiento farmacológico , Neovascularización Patológica/metabolismo , Estrés Oxidativo/efectos de los fármacos , Neoplasias Cutáneas/metabolismo , Melanoma Cutáneo Maligno
10.
Oncol Rep ; 42(6): 2694-2705, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31578578

RESUMEN

Several lines of evidence have clearly demonstrated the role of the tumor microenvironment in favoring the drug resistance of melanoma cells, as well as the progression of this cancer type. Since our previous studies proved that the accumulation of prednisolone disodium phosphate (PLP) in melanoma tissue inhibited tumor growth by exerting anti­angiogenic effects on the most abundant cells of the tumor microenvironment, tumor­associated macrophages (TAMs), the present study investigated whether PLP could enhance the cytotoxic effects of doxorubicin (DOX) on B16.F10 murine melanoma cells. To assess the antitumor efficacy of the combined therapeutic approach based on PLP and DOX, we used a co­culture system composed of bone marrow­derived macrophages (BMDMs) and B16.F10 murine melanoma cells at a cell density ratio that approximates the melanoma microenvironment in vivo, ensuring the polarization of the BMDMs into TAMs. Thus, we assessed the combined therapeutic effects of PLP and DOX on melanoma cell proliferation and apoptosis, as well as on supportive processes for tumor growth, such as oxidative stress as well as the angiogenic and inflammatory capacity of the cell co­culture. Our data demonstrated that the cytotoxicity of DOX was potentiated mainly via the anti­angiogenic activity of PLP in the melanoma microenvironment in vitro. Moreover, the amplitude of the cytotoxicity of the combined treatments may be linked to the degree of the suppression of the pro­angiogenic function of TAMs. Thus, the potent decrease in the expression of the majority of the angiogenic and inflammatory proteins in TAMs following the concomitant administration of PLP and DOX may be associated with their anti­proliferative, as well as pro­apoptotic effects on B16.F10 melanoma cells. However, the combination therapy tested did not affect the immunosuppressive phenotype of the TAMs, as the levels of two important markers of the M2­like phenotype of macrophages (IL­10 and Arg­1) were not reduced or even increased following these treatments. On the whole, the findings of this study indicated that PLP improved the therapeutic outcome of DOX in the melanoma microenvironment via the inhibition of the pro­angiogenic function of TAMs.


Asunto(s)
Doxorrubicina/farmacología , Melanoma Experimental/tratamiento farmacológico , Neovascularización Patológica/tratamiento farmacológico , Prednisolona/análogos & derivados , Inhibidores de la Angiogénesis/farmacología , Animales , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Sistemas de Liberación de Medicamentos , Humanos , Liposomas/farmacología , Macrófagos/efectos de los fármacos , Macrófagos/patología , Melanoma Experimental/patología , Ratones , Neovascularización Patológica/patología , Prednisolona/farmacología , Microambiente Tumoral/efectos de los fármacos
11.
Drug Deliv Transl Res ; 9(1): 260-272, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30421392

RESUMEN

Our recent studies have demonstrated that the antitumor efficacy of doxorubicin (DOX), administered in long-circulating liposomes (LCL), could be considerably improved after its co-encapsulation with curcumin (CURC). Thus, the question addressed within this article is whether LCL-CURC-DOX can be exploited more efficiently than liposomal DOX for future colorectal cancer therapy. Therefore, we investigated the physicochemical and biological properties of LCL-CURC-DOX and the mechanisms of its antitumor activity in C26 murine colon carcinoma in vivo. Our results proved that the developed nanoformulation based on the co-encapsulation of CURC and DOX met the requirements of a modern drug delivery system for future cancer therapy, demonstrating enhanced antitumor activity on C26 colon carcinoma in vivo. The antitumor efficacy of LCL-CURC-DOX relied on suppressive effects on main protumor processes such as angiogenesis, inflammation, oxidative stress, invasion and resistance to apoptosis, and on the dysregulation of Th1/Th2 cell axis which favored the antineoplastic phenotype of cells in tumor microenvironment (TME). The development of multitargeted strategies aiming at stimulating antitumor effects within the tumor milieu and counteracting the escape mechanisms of cancer cells would be beneficial in the management of colon cancer in the future.


Asunto(s)
Neoplasias del Colon/tratamiento farmacológico , Curcumina/administración & dosificación , Doxorrubicina/administración & dosificación , Polietilenglicoles/química , Microambiente Tumoral/efectos de los fármacos , Animales , Protocolos de Quimioterapia Combinada Antineoplásica , Línea Celular Tumoral , Curcumina/química , Curcumina/farmacología , Doxorrubicina/química , Doxorrubicina/farmacología , Composición de Medicamentos , Liposomas , Ratones , Nanopartículas/química , Resultado del Tratamiento , Ensayos Antitumor por Modelo de Xenoinjerto
12.
PLoS One ; 13(8): e0202827, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30138430

RESUMEN

The major drawback of current anti-angiogenic therapies is drug resistance, mainly caused by overexpression of the transcription factor, hypoxia-inducible factor 1α (HIF-1α) as a result of treatment-induced hypoxia, which stimulates cancer cells to develop aggressive and immunosuppressive phenotypes. Moreover, the cancer cell resistance to anti-angiogenic therapies is deeply mediated by the communication between tumor cells and tumor-associated macrophages (TAMs)-the most important microenvironmental cells for the coordination of all supportive processes in tumor development. Thus, simultaneous targeting of TAMs and cancer cells could improve the outcome of the anti-angiogenic therapies. Since our previous studies proved that simvastatin (SIM) exerts strong antiproliferative actions on B16.F10 murine melanoma cells via reduction of TAMs-mediated oxidative stress and inhibition of intratumor production of HIF-1α, we investigated whether the antitumor efficacy of the anti-angiogenic agent-5,6-dimethylxanthenone-4-acetic acid (DMXAA) could be improved by its co-administration with the lipophilic statin. Our results provide confirmatory evidence for the ability of the combined treatment to suppress the aggressive phenotype of the B16.F10 melanoma cells co-cultured with TAMs under hypoxia-mimicking conditions in vitro. Thus, proliferation and migration capacity of the melanoma cells were strongly decelerated after the co-administration of SIM and DMXAA. Moreover, our data suggested that the anti-oxidant action of the combined treatment, as a result of melanogenesis stimulation, might be the principal cause for the simultaneous suppression of key molecules involved in melanoma cell aggressiveness, present in melanoma cells (HIF-1α) as well as in TAMs (arginase-1). Finally, the concomitant suppression of these proteins might have contributed to a very strong inhibition of the angiogenic capacity of the cell co-culture microenvironment.


Asunto(s)
Inhibidores de la Angiogénesis/farmacología , Melanoma Experimental/tratamiento farmacológico , Simvastatina/farmacología , Xantonas/farmacología , Inhibidores de la Angiogénesis/uso terapéutico , Animales , Comunicación Celular/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Técnicas de Cocultivo , Resistencia a Antineoplásicos , Ensayos de Selección de Medicamentos Antitumorales , Quimioterapia Combinada , Macrófagos/efectos de los fármacos , Macrófagos/patología , Melanoma Experimental/patología , Ratones , Invasividad Neoplásica , Neovascularización Patológica , Simvastatina/uso terapéutico , Microambiente Tumoral/efectos de los fármacos , Xantonas/uso terapéutico
13.
Pharmacol Rep ; 70(2): 331-339, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29477042

RESUMEN

BACKGROUND: Emerging treatment options for colon cancer are needed to overcome the limitations regarding the side effects of current chemotherapeutics and drug resistance. The goal of this study was to assess the antitumor actions of PEGylated long-circulating liposomes (LCL) co-delivering curcumin (CURC) and doxorubicin (DOX) on murine colon carcinoma cells (C26). METHODS: The cytotoxicity of CURC and DOX, administered alone or in combination, either in free or LCL form, was evaluated with regard to antiproliferative effects on C26 cells and to protumor processes that might be affected. RESULTS: Our results indicated that PEGylated LCL-CURC-DOX exerted strong antiproliferative effects on C26 cells, slightly exceeding those induced by free CURC-DOX, but higher than either agent administered alone in their free form. These effects of LCL-CURC-DOX were due to the inhibition of the production of angiogenic/inflammatory proteins in a NF-κB-dependent manner, but were independent of ROS production or AP-1 c-Jun activation. Notable, the anti-angiogenic actions of LCL-CURC-DOX appeared to be much stronger than those induced by the co-administration of CURC and DOX in their free form, on C26 colon cancer cells. CONCLUSION: LCL-CURC-DOX demonstrated enhanced cytotoxicity on C26 murine colon cancer cells by inhibiting the production of the majority of factors involved in tumor-associated angiogenesis and inflammation and is now being evaluated in vivo regarding its efficacy towards tumor growth in colon cancer.


Asunto(s)
Inhibidores de la Angiogénesis/farmacología , Antiinflamatorios/farmacología , Neoplasias del Colon/tratamiento farmacológico , Curcumina/farmacología , Doxorrubicina/farmacología , Liposomas/química , Neovascularización Patológica/tratamiento farmacológico , Animales , Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Colon/efectos de los fármacos , Colon/metabolismo , Neoplasias del Colon/metabolismo , Resistencia a Antineoplásicos/efectos de los fármacos , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Ratones , FN-kappa B/metabolismo , Neovascularización Patológica/metabolismo , Polietilenglicoles/química , Proteínas Proto-Oncogénicas c-jun/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Factor de Transcripción AP-1/metabolismo
14.
J Cancer ; 9(2): 440-449, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29344291

RESUMEN

Purpose: Besides cholesterol lowering effects, simvastatin (SIM) at very high doses possesses antitumor actions. Moreover our previous studies demonstrated that tumor-targeted delivery of SIM by using long-circulating liposomes (LCL) improved the therapeutic index of this drug in murine melanoma-bearing mice. To evaluate whether this finding can be exploited for future therapy of colorectal cancer the antitumor activity and the underlying mechanisms of long-circulating liposomal simvastatin (LCL-SIM) efficacy for inhibition of C26 murine colon carcinoma growth in vivo were investigated. Materials and Methods: To find LCL-SIM dose with the highest therapeutic index, dose-response relationship and side effects of different LCL-SIM doses were assessed in C26 colon carcinoma-bearing mice. The underlying mechanisms of LCL-SIM versus free SIM treatments were investigated with regard to their actions on C26 cell proliferation and apoptosis (via tumor tissues immunostaining for PCNA and Bax markers), tumor inflammation (via western blot analysis of NF-κΒ production), angiogenesis (using an angiogenic protein array), and oxidative stress (by HPLC assessment of malondialdehyde). Results: Our findings suggest that LCL-SIM antitumor activity on C26 colon carcinoma is a result of the tumor-targeting property of the liposome formulation, as free SIM treatment was ineffective. Moreover, LCL-SIM exerted significant antiproliferative and pro-apoptotic actions on C26 cells, notable suppressive effects on two main supportive processes for tumor development, inflammation and angiogenesis, and only slight anti-oxidant actions. Conclusion: Our data proved that LCL-SIM antitumor activity in C26 colon carcinoma was based on cytotoxic effects on these cancer cells and suppressive actions on tumor angiogenesis and inflammation.

15.
Oncol Lett ; 13(5): 3942-3950, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28521491

RESUMEN

Our previous studies reported that one of the main mechanisms of the antitumor activity of simvastatin (SIM) in B16.F10 murine melanoma cells was associated with strong suppression of the constitutive cell production of the α subunit of the heterodimeric transcription factor hypoxia-inducible factor (HIF)-1. Thus, the present study aimed to broaden this finding under hypoxic conditions induced by incubation of B16.F10 cells with cobalt chloride, when the constitutive production of HIF-1α in these melanoma cells is amplified by inducible expression of this factor. The data demonstrated that the SIM antiproliferative effects on melanoma cells were mediated mainly via strong suppressive actions on the B16.F10 cell capacity to support tumor angiogenesis and inflammation, as a result of a high inhibition of the inducible expression of HIF-1α. However, the constitutive expression of HIF-1α was not affected by SIM, probably due to the lack of effect of this statin on nuclear factor-κB production in B16.F10 cancer cells at the concentration tested. Additionally, the present study noted slight reducing effects of SIM on tumor oxidative stress, which may contribute to the main inhibitory action of this statin on HIF-1α production in hypoxic tumor cells. Collectively, these data are valuable for future anticancer strategies based on SIM administration in combination with cytotoxic drugs that are able to counteract the constitutive expression of HIF-1α in tumors.

16.
Oncol Rep ; 37(4): 2472-2480, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28260079

RESUMEN

The role of tumor-associated macrophages (TAMs) in the development of colon carcinoma is still controversial. Therefore, the present study aimed to investigate the TAM­driven processes that may affect colon cancer cell proliferation. To achieve this purpose, murine macrophages were co-cultured with C26 murine colon carcinoma cells at a cell density ratio that approximates physiological conditions for colon carcinoma development in vivo. In this respect, the effects of TAM-mediated angiogenesis, inflammation and oxidative stress on the proliferative capacity of C26 murine colon carcinoma cells were studied. To gain insight into the TAM-driven oxidative stress, NADPH oxidase, the main pro-oxidant enzyme in macrophages, was inhibited. Our data revealed that the stimulatory effects of TAMs on C26 cell proliferation may be related mainly to their pro-oxidant actions exerted by NADPH oxidase activity, which maintains the redox status and the angiogenic capacity of the tumor microenvironment. Additionally, the anti-inflammatory and pro-angiogenic effects of TAMs on tumor cells were found to create a favorable microenvironment for C26 colon carcinoma development and progression. In conclusion, our data confirmed the protumor role of TAMs in the development of colon carcinoma in an oxidative stress-dependent manner that potentiates the angiogenic capacity of the tumor microenvironment. These data may offer valuable information for future tumor-targeted therapies based on TAM 're-education' strategies.


Asunto(s)
Neoplasias del Colon/patología , Macrófagos/citología , NADPH Oxidasas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Animales , Línea Celular Tumoral , Proliferación Celular , Técnicas de Cocultivo , Neoplasias del Colon/irrigación sanguínea , Neoplasias del Colon/inmunología , Citocinas/metabolismo , Humanos , Macrófagos/inmunología , Ratones , Estrés Oxidativo , Microambiente Tumoral
17.
Cancer Biol Ther ; 18(8): 616-626, 2017 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-28696813

RESUMEN

The antitumor efficacy of 5-fluorouracil (5-FU) in advanced colorectal cancer (CRC) is hindered not only by the low therapeutic index, but also by tumor cell resistance to this cytotoxic drug. Therefore, to enhance the 5-FU antitumor activity, the present research used a novel tumor-targeted therapy based on the co-administration of 5-FU encapsulated in long-circulating liposomes (LCL-5-FU) together with liposomal prednisolone phosphate (LCL-PLP), a formulation with known anti-angiogenic actions on C26 murine colon carcinoma cells. Thus, we assessed the in vivo effects of the combined liposomal drug therapy on C26 carcinoma growth as well as on the production of molecular markers with key roles in tumor development such as angiogenic, inflammatory, and oxidative stress molecules. To get further insight into the polarization state of tumor microenvironment after the treatment, we determined the IL-10/IL-12p70 ratio in tumors. Our results showed that combined liposomal drug therapy inhibited almost totally tumor growth and was superior as antitumor activity to both single liposomal drug therapies tested. The antitumor efficacy of the combined therapy was mainly related to the anti-angiogenic and anti-inflammatory actions on C26 carcinoma milieu, being favored by its controlling effect on intratumor oxidative stress and the skewing of polarization of tumor microenvironmental cells toward their antineoplastic phenotypes. Thus, our study unveils a promising treatment strategy for CRC that should be furthermore considered.


Asunto(s)
Antineoplásicos/farmacología , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Neoplasias del Colon/tratamiento farmacológico , Fluorouracilo/farmacología , Glucocorticoides/farmacología , Prednisolona/análogos & derivados , Animales , Antineoplásicos/uso terapéutico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Colon/irrigación sanguínea , Colon/patología , Neoplasias del Colon/irrigación sanguínea , Neoplasias del Colon/patología , Sinergismo Farmacológico , Fluorouracilo/uso terapéutico , Glucocorticoides/uso terapéutico , Humanos , Liposomas , Masculino , Ratones , Ratones Endogámicos BALB C , Neovascularización Patológica/tratamiento farmacológico , Estrés Oxidativo/efectos de los fármacos , Prednisolona/farmacología , Prednisolona/uso terapéutico , Resultado del Tratamiento , Microambiente Tumoral/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA