Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 156
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Allergy Clin Immunol ; 150(3): 604-611, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35367470

RESUMEN

BACKGROUND: The study of pathogenic mechanisms in adult asthma is often marred by a lack of precise information about the natural history of the disease. Children who have persistent wheezing (PW) during the first 6 years of life and whose symptoms start before age 3 years (PW+) are much more likely to have wheezing illnesses due to rhinovirus (RV) in infancy and to have asthma into adult life than are those who do not have PW (PW-). OBJECTIVE: Our aim was to determine whether nasal epithelial cells from PW+ asthmatic adults as compared with cells from PW- asthmatic adults show distinct biomechanistic processes activated by RV exposure. METHODS: Air-liquid interface cultures derived from nasal epithelial cells of 36-year old participants with active asthma with and without a history of PW in childhood (10 PW+ participants and 20 PW- participants) from the Tucson Children's Respiratory Study were challenged with a human RV-A strain (RV-A16) or control, and their RNA was sequenced. RESULTS: A total of 35 differentially expressed genes involved in extracellular remodeling and angiogenesis distinguished the PW+ group from the PW- group at baseline and after RV-A stimulation. Notably, 22 transcriptomic pathways showed PW-by-RV interactions; the pathways were invariably overactivated in PW+ patients, and were involved in Toll-like receptor- and cytokine-mediated responses, remodeling, and angiogenic processes. CONCLUSIONS: Asthmatic adults with a history of persistent wheeze in the first 6 years of life have specific biomolecular alterations in response to RV-A that are not present in patients without such a history. Targeting these mechanisms may slow the progression of asthma in these patients.


Asunto(s)
Asma , Infecciones por Enterovirus , Infecciones por Picornaviridae , Adulto , Asma/diagnóstico , Niño , Preescolar , Células Epiteliales , Humanos , Fenotipo , Ruidos Respiratorios , Rhinovirus/genética
2.
Bioinformatics ; 37(Suppl_1): i67-i75, 2021 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-34252934

RESUMEN

MOTIVATION: Identifying altered transcripts between very small human cohorts is particularly challenging and is compounded by the low accrual rate of human subjects in rare diseases or sub-stratified common disorders. Yet, single-subject studies (S3) can compare paired transcriptome samples drawn from the same patient under two conditions (e.g. treated versus pre-treatment) and suggest patient-specific responsive biomechanisms based on the overrepresentation of functionally defined gene sets. These improve statistical power by: (i) reducing the total features tested and (ii) relaxing the requirement of within-cohort uniformity at the transcript level. We propose Inter-N-of-1, a novel method, to identify meaningful differences between very small cohorts by using the effect size of 'single-subject-study'-derived responsive biological mechanisms. RESULTS: In each subject, Inter-N-of-1 requires applying previously published S3-type N-of-1-pathways MixEnrich to two paired samples (e.g. diseased versus unaffected tissues) for determining patient-specific enriched genes sets: Odds Ratios (S3-OR) and S3-variance using Gene Ontology Biological Processes. To evaluate small cohorts, we calculated the precision and recall of Inter-N-of-1 and that of a control method (GLM+EGS) when comparing two cohorts of decreasing sizes (from 20 versus 20 to 2 versus 2) in a comprehensive six-parameter simulation and in a proof-of-concept clinical dataset. In simulations, the Inter-N-of-1 median precision and recall are > 90% and >75% in cohorts of 3 versus 3 distinct subjects (regardless of the parameter values), whereas conventional methods outperform Inter-N-of-1 at sample sizes 9 versus 9 and larger. Similar results were obtained in the clinical proof-of-concept dataset. AVAILABILITY AND IMPLEMENTATION: R software is available at Lussierlab.net/BSSD.


Asunto(s)
Perfilación de la Expresión Génica , Enfermedades Raras , Ontología de Genes , Humanos , Enfermedades Raras/genética , Transcriptoma
3.
Brief Bioinform ; 20(3): 789-805, 2019 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-29272327

RESUMEN

The development of computational methods capable of analyzing -omics data at the individual level is critical for the success of precision medicine. Although unprecedented opportunities now exist to gather data on an individual's -omics profile ('personalome'), interpreting and extracting meaningful information from single-subject -omics remain underdeveloped, particularly for quantitative non-sequence measurements, including complete transcriptome or proteome expression and metabolite abundance. Conventional bioinformatics approaches have largely been designed for making population-level inferences about 'average' disease processes; thus, they may not adequately capture and describe individual variability. Novel approaches intended to exploit a variety of -omics data are required for identifying individualized signals for meaningful interpretation. In this review-intended for biomedical researchers, computational biologists and bioinformaticians-we survey emerging computational and translational informatics methods capable of constructing a single subject's 'personalome' for predicting clinical outcomes or therapeutic responses, with an emphasis on methods that provide interpretable readouts. Key points: (i) the single-subject analytics of the transcriptome shows the greatest development to date and, (ii) the methods were all validated in simulations, cross-validations or independent retrospective data sets. This survey uncovers a growing field that offers numerous opportunities for the development of novel validation methods and opens the door for future studies focusing on the interpretation of comprehensive 'personalomes' through the integration of multiple -omics, providing valuable insights into individual patient outcomes and treatments.


Asunto(s)
Medicina de Precisión , Transcriptoma , Humanos
4.
BMC Bioinformatics ; 21(1): 374, 2020 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-32859146

RESUMEN

BACKGROUND: In this era of data science-driven bioinformatics, machine learning research has focused on feature selection as users want more interpretation and post-hoc analyses for biomarker detection. However, when there are more features (i.e., transcripts) than samples (i.e., mice or human samples) in a study, it poses major statistical challenges in biomarker detection tasks as traditional statistical techniques are underpowered in high dimension. Second and third order interactions of these features pose a substantial combinatoric dimensional challenge. In computational biology, random forest (RF) classifiers are widely used due to their flexibility, powerful performance, their ability to rank features, and their robustness to the "P > > N" high-dimensional limitation that many matrix regression algorithms face. We propose binomialRF, a feature selection technique in RFs that provides an alternative interpretation for features using a correlated binomial distribution and scales efficiently to analyze multiway interactions. RESULTS: In both simulations and validation studies using datasets from the TCGA and UCI repositories, binomialRF showed computational gains (up to 5 to 300 times faster) while maintaining competitive variable precision and recall in identifying biomarkers' main effects and interactions. In two clinical studies, the binomialRF algorithm prioritizes previously-published relevant pathological molecular mechanisms (features) with high classification precision and recall using features alone, as well as with their statistical interactions alone. CONCLUSION: binomialRF extends upon previous methods for identifying interpretable features in RFs and brings them together under a correlated binomial distribution to create an efficient hypothesis testing algorithm that identifies biomarkers' main effects and interactions. Preliminary results in simulations demonstrate computational gains while retaining competitive model selection and classification accuracies. Future work will extend this framework to incorporate ontologies that provide pathway-level feature selection from gene expression input data.


Asunto(s)
Algoritmos , Biomarcadores/metabolismo , Biomarcadores de Tumor/metabolismo , Neoplasias de la Mama/diagnóstico , Biología Computacional/métodos , Femenino , Humanos , Neoplasias Renales/diagnóstico
5.
BMC Bioinformatics ; 21(1): 495, 2020 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-33138767

RESUMEN

An amendment to this paper has been published and can be accessed via the original article.

6.
Respir Res ; 21(1): 321, 2020 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-33276795

RESUMEN

RATIONALE: Despite the availability of multi-"omics" strategies, insights into the etiology and pathogenesis of sarcoidosis have been elusive. This is partly due to the lack of reliable preclinical models and a paucity of validated biomarkers. As granulomas are a key feature of sarcoidosis, we speculate that direct genomic interrogation of sarcoid tissues, may lead to identification of dysregulated gene pathways or biomarker signatures. OBJECTIVE: To facilitate the development sarcoidosis genomic biomarkers by gene expression profiling of sarcoidosis granulomas in lung and lymph node tissues (most commonly affected organs) and comparison to infectious granulomas (coccidiodomycosis and tuberculosis). METHODS: Transcriptomic profiles of immune-related gene from micro-dissected sarcoidosis granulomas within lung and mediastinal lymph node tissues and compared to infectious granulomas from paraffin-embedded blocks. Differentially-expressed genes (DEGs) were profiled, compared among the three granulomatous diseases and analyzed for functional enrichment pathways. RESULTS: Despite histologic similarities, DEGs and pathway enrichment markedly differed in sarcoidosis granulomas from lymph nodes and lung. Lymph nodes showed a clear immunological response, whereas a structural regenerative response was observed in lung. Sarcoidosis granuloma gene expression data corroborated previously reported genomic biomarkers (STAB1, HBEGF, and NOTCH4), excluded others and identified new genomic markers present in lung and lymph nodes, ADAMTS1, NPR1 and CXCL2. Comparisons between sarcoidosis and pathogen granulomas identified pathway divergences and commonalities at gene expression level. CONCLUSION: These findings suggest the importance of tissue and disease-specificity evaluation when exploring sarcoidosis genomic markers. This relevant translational information in sarcoidosis and other two histopathological similar infections provides meaningful specific genomic-derived biomarkers for sarcoidosis diagnosis and prognosis.


Asunto(s)
Coccidioidomicosis/genética , Perfilación de la Expresión Génica , Granuloma/genética , Enfermedades Linfáticas/genética , Sarcoidosis Pulmonar/genética , Transcriptoma , Tuberculosis/genética , Adulto , Anciano , Coccidioidomicosis/diagnóstico , Coccidioidomicosis/inmunología , Coccidioidomicosis/microbiología , Diagnóstico Diferencial , Femenino , Marcadores Genéticos , Granuloma/diagnóstico , Granuloma/inmunología , Granuloma/microbiología , Humanos , Enfermedades Linfáticas/diagnóstico , Enfermedades Linfáticas/inmunología , Masculino , Persona de Mediana Edad , Sarcoidosis Pulmonar/diagnóstico , Sarcoidosis Pulmonar/inmunología , Tuberculosis/diagnóstico , Tuberculosis/inmunología , Tuberculosis/microbiología , Adulto Joven
7.
Blood ; 129(22): 3009-3016, 2017 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-28373264

RESUMEN

Sickle cell disease (SCD) complications are associated with increased morbidity and risk of mortality. We sought to identify a circulating transcriptomic profile predictive of these poor outcomes in SCD. Training and testing cohorts consisting of adult patients with SCD were recruited and prospectively followed. A pathway-based signature derived from grouping peripheral blood mononuclear cell transcriptomes distinguished 2 patient clusters with differences in survival in the training cohort. These findings were validated in a testing cohort in which the association between cluster 1 molecular profiling and mortality remained significant in a fully adjusted model. In a third cohort of West African children with SCD, cluster 1 differentiated SCD severity using a published scoring index. Finally, a risk score composed of assigning weights to cluster 1 profiling, along with established clinical risk factors using tricuspid regurgitation velocity, white blood cell count, history of acute chest syndrome, and hemoglobin levels, demonstrated a higher hazard ratio for mortality in both the training and testing cohorts compared with clinical risk factors or cluster 1 data alone. Circulating transcriptomic profiles are a powerful method to risk-stratify severity of disease and poor outcomes in both children and adults, respectively, with SCD and highlight potential associated molecular pathways.


Asunto(s)
Anemia de Células Falciformes/genética , Síndrome Torácico Agudo/genética , Adulto , Anemia de Células Falciformes/sangre , Anemia de Células Falciformes/mortalidad , Niño , Estudios de Cohortes , Femenino , Hemoglobinas/metabolismo , Humanos , Estimación de Kaplan-Meier , Recuento de Leucocitos , Masculino , Persona de Mediana Edad , Pronóstico , Estudios Prospectivos , Factores de Riesgo , Transcriptoma , Insuficiencia de la Válvula Tricúspide/genética , Adulto Joven
8.
Crit Care ; 23(1): 410, 2019 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-31842964

RESUMEN

BACKGROUND: There is a compelling unmet medical need for biomarker-based models to risk-stratify patients with acute respiratory distress syndrome. Effective stratification would optimize participant selection for clinical trial enrollment by focusing on those most likely to benefit from new interventions. Our objective was to develop a prognostic, biomarker-based model for predicting mortality in adult patients with acute respiratory distress syndrome. METHODS: This is a secondary analysis using a cohort of 252 mechanically ventilated subjects with the diagnosis of acute respiratory distress syndrome. Survival to day 7 with both day 0 (first day of presentation) and day 7 sample availability was required. Blood was collected for biomarker measurements at first presentation to the intensive care unit and on the seventh day. Biomarkers included cytokine-chemokines, dual-functioning cytozymes, and vascular injury markers. Logistic regression, latent class analysis, and classification and regression tree analysis were used to identify the plasma biomarkers most predictive of 28-day ARDS mortality. RESULTS: From eight biologically relevant biomarker candidates, six demonstrated an enhanced capacity to predict mortality at day 0. Latent-class analysis identified two biomarker-based phenotypes. Phenotype A exhibited significantly higher plasma levels of angiopoietin-2, macrophage migration inhibitory factor, interleukin-8, interleukin-1 receptor antagonist, interleukin-6, and extracellular nicotinamide phosphoribosyltransferase (eNAMPT) compared to phenotype B. Mortality at 28 days was significantly higher for phenotype A compared to phenotype B (32% vs 19%, p = 0.04). CONCLUSIONS: An adult biomarker-based risk model reliably identifies ARDS subjects at risk of death within 28 days of hospitalization.


Asunto(s)
Biomarcadores/análisis , Síndrome de Dificultad Respiratoria/mortalidad , Medición de Riesgo/métodos , APACHE , Adulto , Biomarcadores/sangre , Citocinas/análisis , Citocinas/sangre , Femenino , Humanos , Proteína Antagonista del Receptor de Interleucina 1/análisis , Proteína Antagonista del Receptor de Interleucina 1/sangre , Interleucina-1beta/análisis , Interleucina-1beta/sangre , Interleucina-6/análisis , Interleucina-6/sangre , Interleucina-8/análisis , Interleucina-8/sangre , Oxidorreductasas Intramoleculares/análisis , Oxidorreductasas Intramoleculares/sangre , Análisis de Clases Latentes , Modelos Logísticos , Factores Inhibidores de la Migración de Macrófagos/análisis , Factores Inhibidores de la Migración de Macrófagos/sangre , Masculino , Persona de Mediana Edad , Nicotinamida Fosforribosiltransferasa/análisis , Nicotinamida Fosforribosiltransferasa/sangre , Fragmentos de Péptidos/análisis , Fragmentos de Péptidos/sangre , Síndrome de Dificultad Respiratoria/sangre , Síndrome de Dificultad Respiratoria/epidemiología , Medición de Riesgo/normas , Receptores de Esfingosina-1-Fosfato/análisis , Receptores de Esfingosina-1-Fosfato/sangre , Proteínas de Transporte Vesicular/análisis , Proteínas de Transporte Vesicular/sangre
9.
Am J Respir Crit Care Med ; 197(11): 1421-1432, 2018 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-29425463

RESUMEN

RATIONALE: Genetic factors are involved in acute respiratory distress syndrome (ARDS) susceptibility. Identification of novel candidate genes associated with increased risk and severity will improve our understanding of ARDS pathophysiology and enhance efforts to develop novel preventive and therapeutic approaches. OBJECTIVES: To identify genetic susceptibility targets for ARDS. METHODS: A genome-wide association study was performed on 232 African American patients with ARDS and 162 at-risk control subjects. The Identify Candidate Causal SNPs and Pathways platform was used to infer the association of known gene sets with the top prioritized intragenic SNPs. Preclinical validation of SELPLG (selectin P ligand gene) was performed using mouse models of LPS- and ventilator-induced lung injury. Exonic variation within SELPLG distinguishing patients with ARDS from sepsis control subjects was confirmed in an independent cohort. MEASUREMENTS AND MAIN RESULTS: Pathway prioritization analysis identified a nonsynonymous coding SNP (rs2228315) within SELPLG, encoding P-selectin glycoprotein ligand 1, to be associated with increased susceptibility. In an independent cohort, two exonic SELPLG SNPs were significantly associated with ARDS susceptibility. Additional support for SELPLG as an ARDS candidate gene was derived from preclinical ARDS models where SELPLG gene expression in lung tissues was significantly increased in both ventilator-induced (twofold increase) and LPS-induced (5.7-fold increase) murine lung injury models compared with controls. Furthermore, Selplg-/- mice exhibited significantly reduced LPS-induced inflammatory lung injury compared with wild-type C57/B6 mice. Finally, an antibody that neutralizes P-selectin glycoprotein ligand 1 significantly attenuated LPS-induced lung inflammation. CONCLUSIONS: These findings identify SELPLG as a novel ARDS susceptibility gene among individuals of European and African descent.


Asunto(s)
Negro o Afroamericano/genética , Estudio de Asociación del Genoma Completo , Genotipo , Síndrome de Dificultad Respiratoria/genética , Síndrome de Dificultad Respiratoria/fisiopatología , Selectinas/genética , Población Blanca/genética , Adulto , Anciano , Estudios de Cohortes , Femenino , Predisposición Genética a la Enfermedad , Humanos , Masculino , Persona de Mediana Edad , Síndrome de Dificultad Respiratoria/epidemiología , Factores de Riesgo , Estados Unidos/epidemiología
10.
Am J Respir Crit Care Med ; 196(2): 208-219, 2017 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-28157391

RESUMEN

RATIONALE: Differences in the lung microbial community influence idiopathic pulmonary fibrosis (IPF) progression. Whether the lung microbiome influences IPF host defense remains unknown. OBJECTIVES: To explore the host immune response and microbial interaction in IPF as they relate to progression-free survival (PFS), fibroblast function, and leukocyte phenotypes. METHODS: Paired microarray gene expression data derived from peripheral blood mononuclear cells as well as 16S ribosomal RNA sequencing data from bronchoalveolar lavage obtained as part of the COMET-IPF (Correlating Outcomes with Biochemical Markers to Estimate Time-Progression in Idiopathic Pulmonary Fibrosis) study were used to conduct association pathway analyses. The responsiveness of paired lung fibroblasts to Toll-like receptor 9 (TLR9) stimulation by CpG-oligodeoxynucleotide (CpG-ODN) was integrated into microbiome-gene expression association analyses for a subset of individuals. The relationship between associated pathways and circulating leukocyte phenotypes was explored by flow cytometry. MEASUREMENTS AND MAIN RESULTS: Down-regulation of immune response pathways, including nucleotide-binding oligomerization domain (NOD)-, Toll-, and RIG1-like receptor pathways, was associated with worse PFS. Ten of the 11 PFS-associated pathways correlated with microbial diversity and individual genus, with species accumulation curve richness as a hub. Higher species accumulation curve richness was significantly associated with inhibition of NODs and TLRs, whereas increased abundance of Streptococcus correlated with increased NOD-like receptor signaling. In a network analysis, expression of up-regulated signaling pathways was strongly associated with decreased abundance of operational taxonomic unit 1341 (OTU1341; Prevotella) among individuals with fibroblasts responsive to CpG-ODN stimulation. The expression of TLR signaling pathways was also linked to CpG-ODN responsive fibroblasts, OTU1341 (Prevotella), and Shannon index of microbial diversity in a network analysis. Lymphocytes expressing C-X-C chemokine receptor 3 CD8 significantly correlated with OTU1348 (Staphylococcus). CONCLUSIONS: These findings suggest that host-microbiome interactions influence PFS and fibroblast responsiveness.


Asunto(s)
Fibrosis Pulmonar Idiopática/inmunología , Fibrosis Pulmonar Idiopática/microbiología , Inmunidad Innata/inmunología , Microbiota/inmunología , Lavado Broncoalveolar , Supervivencia sin Enfermedad , Regulación hacia Abajo/inmunología , Femenino , Citometría de Flujo , Expresión Génica/inmunología , Humanos , Masculino , Análisis por Micromatrices , Persona de Mediana Edad
11.
Bioinformatics ; 32(12): i80-i89, 2016 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-27307648

RESUMEN

MOTIVATION: As 'omics' biotechnologies accelerate the capability to contrast a myriad of molecular measurements from a single cell, they also exacerbate current analytical limitations for detecting meaningful single-cell dysregulations. Moreover, mRNA expression alone lacks functional interpretation, limiting opportunities for translation of single-cell transcriptomic insights to precision medicine. Lastly, most single-cell RNA-sequencing analytic approaches are not designed to investigate small populations of cells such as circulating tumor cells shed from solid tumors and isolated from patient blood samples. RESULTS: In response to these characteristics and limitations in current single-cell RNA-sequencing methodology, we introduce an analytic framework that models transcriptome dynamics through the analysis of aggregated cell-cell statistical distances within biomolecular pathways. Cell-cell statistical distances are calculated from pathway mRNA fold changes between two cells. Within an elaborate case study of circulating tumor cells derived from prostate cancer patients, we develop analytic methods of aggregated distances to identify five differentially expressed pathways associated to therapeutic resistance. Our aggregation analyses perform comparably with Gene Set Enrichment Analysis and better than differentially expressed genes followed by gene set enrichment. However, these methods were not designed to inform on differential pathway expression for a single cell. As such, our framework culminates with the novel aggregation method, cell-centric statistics (CCS). CCS quantifies the effect size and significance of differentially expressed pathways for a single cell of interest. Improved rose plots of differentially expressed pathways in each cell highlight the utility of CCS for therapeutic decision-making. AVAILABILITY AND IMPLEMENTATION: http://www.lussierlab.org/publications/CCS/ CONTACT: yves@email.arizona.edu or piegorsch@math.arizona.edu SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Resistencia a Antineoplásicos , Células Neoplásicas Circulantes/efectos de los fármacos , Análisis de Secuencia de ARN , Transcriptoma , Perfilación de la Expresión Génica , Humanos , Masculino , Neoplasias de la Próstata/tratamiento farmacológico , ARN
12.
J Biomed Inform ; 66: 32-41, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-28007582

RESUMEN

MOTIVATION: Understanding dynamic, patient-level transcriptomic response to therapy is an important step forward for precision medicine. However, conventional transcriptome analysis aims to discover cohort-level change, lacking the capacity to unveil patient-specific response to therapy. To address this gap, we previously developed two N-of-1-pathways methods, Wilcoxon and Mahalanobis distance, to detect unidirectionally responsive transcripts within a pathway using a pair of samples from a single subject. Yet, these methods cannot recognize bidirectionally (up and down) responsive pathways. Further, our previous approaches have not been assessed in presence of background noise and are not designed to identify differentially expressed mRNAs between two samples of a patient taken in different contexts (e.g. cancer vs non cancer), which we termed responsive transcripts (RTs). METHODS: We propose a new N-of-1-pathways method, k-Means Enrichment (kMEn), that detects bidirectionally responsive pathways, despite background noise, using a pair of transcriptomes from a single patient. kMEn identifies transcripts responsive to the stimulus through k-means clustering and then tests for an over-representation of the responsive genes within each pathway. The pathways identified by kMEn are mechanistically interpretable pathways significantly responding to a stimulus. RESULTS: In ∼9000 simulations varying six parameters, superior performance of kMEn over previous single-subject methods is evident by: (i) improved precision-recall at various levels of bidirectional response and (ii) lower rates of false positives (1-specificity) when more than 10% of genes in the genome are differentially expressed (background noise). In a clinical proof-of-concept, personal treatment-specific pathways identified by kMEn correlate with therapeutic response (p-value<0.01). CONCLUSION: Through improved single-subject transcriptome dynamics of bidirectionally-regulated signals, kMEn provides a novel approach to identify mechanism-level biomarkers.


Asunto(s)
Perfilación de la Expresión Génica , Medicina de Precisión , Transcriptoma , Análisis por Conglomerados , Interpretación Estadística de Datos , Humanos , ARN Mensajero
13.
Bioinformatics ; 31(12): i293-302, 2015 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-26072495

RESUMEN

MOTIVATION: The conventional approach to personalized medicine relies on molecular data analytics across multiple patients. The path to precision medicine lies with molecular data analytics that can discover interpretable single-subject signals (N-of-1). We developed a global framework, N-of-1-pathways, for a mechanistic-anchored approach to single-subject gene expression data analysis. We previously employed a metric that could prioritize the statistical significance of a deregulated pathway in single subjects, however, it lacked in quantitative interpretability (e.g. the equivalent to a gene expression fold-change). RESULTS: In this study, we extend our previous approach with the application of statistical Mahalanobis distance (MD) to quantify personal pathway-level deregulation. We demonstrate that this approach, N-of-1-pathways Paired Samples MD (N-OF-1-PATHWAYS-MD), detects deregulated pathways (empirical simulations), while not inflating false-positive rate using a study with biological replicates. Finally, we establish that N-OF-1-PATHWAYS-MD scores are, biologically significant, clinically relevant and are predictive of breast cancer survival (P < 0.05, n = 80 invasive carcinoma; TCGA RNA-sequences). CONCLUSION: N-of-1-pathways MD provides a practical approach towards precision medicine. The method generates the magnitude and the biological significance of personal deregulated pathways results derived solely from the patient's transcriptome. These pathways offer the opportunities for deriving clinically actionable decisions that have the potential to complement the clinical interpretability of personal polymorphisms obtained from DNA acquired or inherited polymorphisms and mutations. In addition, it offers an opportunity for applicability to diseases in which DNA changes may not be relevant, and thus expand the 'interpretable 'omics' of single subjects (e.g. personalome). AVAILABILITY AND IMPLEMENTATION: http://www.lussierlab.net/publications/N-of-1-pathways.


Asunto(s)
Neoplasias de la Mama/mortalidad , Perfilación de la Expresión Génica/métodos , Análisis de Secuencia de ARN/métodos , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Interpretación Estadística de Datos , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Estimación de Kaplan-Meier , Medicina de Precisión
15.
BMC Med Inform Decis Mak ; 16: 40, 2016 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-27025583

RESUMEN

Recent advances in the adoption and use of health information technology (HIT) have had a dramatic impact on the practice of medicine. In many environments, this has led to the ability to achieve new efficiencies and levels of safety. In others, the impact has been less positive, and is associated with both: 1) workflow and user experience dissatisfaction; and 2) perceptions of missed opportunities relative to the use of computational tools to enable data-driven and precise clinical decision making. Simultaneously, the "pipeline" through which new diagnostic tools and therapeutic agents are being developed and brought to the point-of-care or population health is challenged in terms of both cost and timeliness. Given the confluence of these trends, it can be argued that now is the time to consider new ways in which HIT can be used to deliver health and wellness interventions comparable to traditional approaches (e.g., drugs, devices, diagnostics, and behavioral modifications). Doing so could serve to fulfill the promise of what has been recently promoted as "precision medicine" in a rapid and cost-effective manner. However, it will also require the health and life sciences community to embrace new modes of using HIT, wherein the use of technology becomes a primary intervention as opposed to enabler of more conventional approaches, a model that we refer to in this commentary as "interventional informatics". Such a paradigm requires attention to critical issues, including: 1) the nature of the relationships between HIT vendors and healthcare innovators; 2) the formation and function of multidisciplinary teams consisting of technologists, informaticians, and clinical or scientific subject matter experts; and 3) the optimal design and execution of clinical studies that focus on HIT as the intervention of interest. Ultimately, the goal of an "interventional informatics" approach can and should be to substantially improve human health and wellness through the use of data-driven interventions at the point of care of broader population levels. Achieving a vision of "interventional informatics" will requires us to re-think how we study HIT tools in order to generate the necessary evidence-base that can support and justify their use as a primary means of improving the human condition.


Asunto(s)
Estudios Clínicos como Asunto , Informática Médica , Humanos , Informática Médica/tendencias
16.
Bioinformatics ; 30(11): 1637-9, 2014 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-24493035

RESUMEN

UNLABELLED: Collecting data from large studies on high-throughput platforms, such as microarray or next-generation sequencing, typically requires processing samples in batches. There are often systematic but unpredictable biases from batch-to-batch, so proper randomization of biologically relevant traits across batches is crucial for distinguishing true biological differences from experimental artifacts. When a large number of traits are biologically relevant, as is common for clinical studies of patients with varying sex, age, genotype and medical background, proper randomization can be extremely difficult to prepare by hand, especially because traits may affect biological inferences, such as differential expression, in a combinatorial manner. Here we present ARTS (automated randomization of multiple traits for study design), which aids researchers in study design by automatically optimizing batch assignment for any number of samples, any number of traits and any batch size. AVAILABILITY AND IMPLEMENTATION: ARTS is implemented in Perl and is available at github.com/mmaiensc/ARTS. ARTS is also available in the Galaxy Tool Shed, and can be used at the Galaxy installation hosted by the UIC Center for Research Informatics (CRI) at galaxy.cri.uic.edu.


Asunto(s)
Distribución Aleatoria , Programas Informáticos , Algoritmos , Femenino , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Masculino , Análisis por Micromatrices , Persona de Mediana Edad
17.
J Biomed Inform ; 55: 94-103, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25797143

RESUMEN

BACKGROUND: Understanding individual patient host-response to viruses is key to designing optimal personalized therapy. Unsurprisingly, in vivo human experimentation to understand individualized dynamic response of the transcriptome to viruses are rarely studied because of the obvious limitations stemming from ethical considerations of the clinical risk. OBJECTIVE: In this rhinovirus study, we first hypothesized that ex vivo human cells response to virus can serve as a proxy for otherwise controversial in vivo human experimentation. We further hypothesized that the N-of-1-pathways framework, previously validated in cancer, can be effective in understanding the more subtle individual transcriptomic response to viral infection. METHOD: N-of-1-pathways computes a significance score for a given list of gene sets at the patient level, using merely the 'omics profiles of two paired samples as input. We extracted the peripheral blood mononuclear cells (PBMC) of four human subjects, aliquoted in two paired samples, one subjected to ex vivo rhinovirus infection. Their dysregulated genes and pathways were then compared to those of 9 human subjects prior and after intranasal inoculation in vivo with rhinovirus. Additionally, we developed the Similarity Venn Diagram, a novel visualization method that goes beyond conventional overlap to show the similarity between two sets of qualitative measures. RESULTS: We evaluated the individual N-of-1-pathways results using two established cohort-based methods: GSEA and enrichment of differentially expressed genes. Similarity Venn Diagrams and individual patient ROC curves illustrate and quantify that the in vivo dysregulation is recapitulated ex vivo both at the gene and pathway level (p-values⩽0.004). CONCLUSION: We established the first evidence that an interpretable dynamic transcriptome metric, conducted as an ex vivo assays for a single subject, has the potential to predict individualized response to infectious disease without the clinical risks otherwise associated to in vivo challenges. These results serve as a foundational work for personalized "virograms".


Asunto(s)
Perfilación de la Expresión Génica/métodos , Leucocitos Mononucleares/virología , Infecciones por Picornaviridae/genética , Infecciones por Picornaviridae/virología , ARN Mensajero/genética , Rhinovirus/genética , Bioensayo/métodos , Células Cultivadas , Bases de Datos Genéticas , Humanos , Medicina de Precisión/métodos , Transducción de Señal/genética
18.
J Biomed Inform ; 58: 226-234, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26524128

RESUMEN

The causal and interplay mechanisms of Single Nucleotide Polymorphisms (SNPs) associated with complex diseases (complex disease SNPs) investigated in genome-wide association studies (GWAS) at the transcriptional level (mRNA) are poorly understood despite recent advancements such as discoveries reported in the Encyclopedia of DNA Elements (ENCODE) and Genotype-Tissue Expression (GTex). Protein interaction network analyses have successfully improved our understanding of both single gene diseases (Mendelian diseases) and complex diseases. Whether the mRNAs downstream of complex disease genes are central or peripheral in the genetic information flow relating DNA to mRNA remains unclear and may be disease-specific. Using expression Quantitative Trait Loci (eQTL) that provide DNA to mRNA associations and network centrality metrics, we hypothesize that we can unveil the systems properties of information flow between SNPs and the transcriptomes of complex diseases. We compare different conditions such as naïve SNP assignments and stringent linkage disequilibrium (LD) free assignments for transcripts to remove confounders from LD. Additionally, we compare the results from eQTL networks between lymphoblastoid cell lines and liver tissue. Empirical permutation resampling (p<0.001) and theoretic Mann-Whitney U test (p<10(-30)) statistics indicate that mRNAs corresponding to complex disease SNPs via eQTL associations are likely to be regulated by a larger number of SNPs than expected. We name this novel property mRNA hubness in eQTL networks, and further term mRNAs with high hubness as master integrators. mRNA master integrators receive and coordinate the perturbation signals from large numbers of polymorphisms and respond to the personal genetic architecture integratively. This genetic signal integration contrasts with the mechanism underlying some Mendelian diseases, where a genetic polymorphism affecting a single protein hub produces a divergent signal that affects a large number of downstream proteins. Indeed, we verify that this property is independent of the hubness in protein networks for which these mRNAs are transcribed. Our findings provide novel insights into the pleiotropy of mRNAs targeted by complex disease polymorphisms and the architecture of the information flow between the genetic polymorphisms and transcriptomes of complex diseases.


Asunto(s)
Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo , ARN Mensajero/genética , Humanos
19.
Am J Respir Crit Care Med ; 189(11): 1402-15, 2014 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-24779708

RESUMEN

RATIONALE: Lysocardiolipin acyltransferase (LYCAT), a cardiolipin-remodeling enzyme regulating the 18:2 linoleic acid pattern of mammalian mitochondrial cardiolipin, is necessary for maintaining normal mitochondrial function and vascular development. We hypothesized that modulation of LYCAT expression in lung epithelium regulates development of pulmonary fibrosis. OBJECTIVES: To define a role for LYCAT in human and murine models of pulmonary fibrosis. METHODS: We analyzed the correlation of LYCAT expression in peripheral blood mononuclear cells (PBMCs) with the outcomes of pulmonary functions and overall survival, and used the murine models to establish the role of LYCAT in fibrogenesis. We studied the LYCAT action on cardiolipin remodeling, mitochondrial reactive oxygen species generation, and apoptosis of alveolar epithelial cells under bleomycin challenge. MEASUREMENTS AND MAIN RESULTS: LYCAT expression was significantly altered in PBMCs and lung tissues from patients with idiopathic pulmonary fibrosis (IPF), which was confirmed in two preclinical murine models of IPF, bleomycin- and radiation-induced pulmonary fibrosis. LYCAT mRNA expression in PBMCs directly and significantly correlated with carbon monoxide diffusion capacity, pulmonary function outcomes, and overall survival. In both bleomycin- and radiation-induced pulmonary fibrosis murine models, hLYCAT overexpression reduced several indices of lung fibrosis, whereas down-regulation of native LYCAT expression by siRNA accentuated fibrogenesis. In vitro studies demonstrated that LYCAT modulated bleomycin-induced cardiolipin remodeling, mitochondrial membrane potential, reactive oxygen species generation, and apoptosis of alveolar epithelial cells, potential mechanisms of LYCAT-mediated lung protection. CONCLUSIONS: This study is the first to identify modulation of LYCAT expression in fibrotic lungs and offers a novel therapeutic approach for ameliorating lung inflammation and pulmonary fibrosis.


Asunto(s)
1-Acilglicerol-3-Fosfato O-Aciltransferasa/genética , Aciltransferasas/genética , Mitocondrias/genética , Fibrosis Pulmonar/diagnóstico , Fibrosis Pulmonar/genética , Animales , Biomarcadores/metabolismo , Cardiolipinas/genética , Estudios de Cohortes , Modelos Animales de Enfermedad , Humanos , Fibrosis Pulmonar Idiopática/diagnóstico , Fibrosis Pulmonar Idiopática/genética , Hibridación in Situ , Leucocitos Mononucleares/metabolismo , Ratones , Mitocondrias/metabolismo , Valor Predictivo de las Pruebas , Fibrosis Pulmonar/enzimología , ARN Mensajero/metabolismo , Sensibilidad y Especificidad , Índice de Severidad de la Enfermedad
20.
Am J Emerg Med ; 33(5): 713-8, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25863652

RESUMEN

Beginning October 2015, the Center for Medicare and Medicaid Services will require medical providers to use the vastly expanded International Classification of Diseases, 10th Revision, Clinical Modification (ICD-10-CM) system. Despite wide availability of information and mapping tools for the next generation of the ICD classification system, some of the challenges associated with transition from ICD-9-CM to ICD-10-CM are not well understood. To quantify the challenges faced by emergency physicians, we analyzed a subset of a 2010 Illinois Medicaid database of emergency department ICD-9-CM codes, seeking to determine the accuracy of existing mapping tools in order to better prepare emergency physicians for the change to the expanded ICD-10-CM system. We found that 27% of 1830 codes represented convoluted multidirectional mappings. We then analyzed the convoluted transitions and found that 8% of total visit encounters (23% of the convoluted transitions) were clinically incorrect. The ambiguity and inaccuracy of these mappings may impact the workflow associated with the translation process and affect the potential mapping between ICD codes and Current Procedural Codes, which determine physician reimbursement.


Asunto(s)
Servicio de Urgencia en Hospital , Clasificación Internacional de Enfermedades , Centers for Medicare and Medicaid Services, U.S. , Codificación Clínica/métodos , Humanos , Mecanismo de Reembolso , Estados Unidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA