Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Mol Ther ; 28(6): 1506-1517, 2020 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-32304667

RESUMEN

Circular RNAs (circRNAs) sequester microRNAs (miRNAs) and repress their endogenous activity. We hypothesized that artificial circRNA sponges (circmiRs) can be constructed to target miRNAs therapeutically, with a low dosage requirement and extended half-lives compared to current alternatives. This could present a new treatment approach for critical global pathologies, including cardiovascular disease. Here, we constructed a circmiR sponge to target known cardiac pro-hypertrophic miR-132 and -212. Expressed circmiRs competitively inhibited miR-132 and -212 activity in luciferase rescue assays and showed greater stability than linear sponges. A design containing 12 bulged binding sites with 12 nucleotides spacing was determined to be optimal. Adeno-associated viruses (AAVs) were used to deliver circmiRs to cardiomyocytes in vivo in a transverse aortic constriction (TAC) mouse model of cardiac disease. Hypertrophic disease characteristics were attenuated, and cardiac function was preserved in treated mice, demonstrating the potential of circmiRs as novel therapeutic tools. Subsequently, group I permutated intron-exon sequences were used to directly synthesize exogenous circmiRs, which showed greater in vitro efficacy than the current gold standard antagomiRs in inhibiting miRNA function. Engineered circRNAs thus offer exciting potential as future therapeutics.


Asunto(s)
Cardiomegalia/fisiopatología , Regulación de la Expresión Génica , MicroARNs/genética , Interferencia de ARN , ARN Circular/genética , Animales , Secuencia de Bases , Sitios de Unión , Cardiomegalia/diagnóstico , Cardiomegalia/etiología , Cardiomegalia/terapia , Modelos Animales de Enfermedad , Técnicas de Transferencia de Gen , Ingeniería Genética , Terapia Genética/métodos , Vectores Genéticos/administración & dosificación , Vectores Genéticos/genética , Pruebas de Función Cardíaca , Ratones , MicroARNs/administración & dosificación , MicroARNs/química , Estabilidad del ARN , ARN Circular/administración & dosificación , ARN Circular/química
2.
Circulation ; 139(16): 1937-1956, 2019 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-30717603

RESUMEN

BACKGROUND: The human genome folds in 3 dimensions to form thousands of chromatin loops inside the nucleus, encasing genes and cis-regulatory elements for accurate gene expression control. Physical tethers of loops are anchored by the DNA-binding protein CTCF and the cohesin ring complex. Because heart failure is characterized by hallmark gene expression changes, it was recently reported that substantial CTCF-related chromatin reorganization underpins the myocardial stress-gene response, paralleled by chromatin domain boundary changes observed in CTCF knockout. METHODS: We undertook an independent and orthogonal analysis of chromatin organization with mouse pressure-overload model of myocardial stress (transverse aortic constriction) and cardiomyocyte-specific knockout of Ctcf. We also downloaded published data sets of similar cardiac mouse models and subjected them to independent reanalysis. RESULTS: We found that the cardiomyocyte chromatin architecture remains broadly stable in transverse aortic constriction hearts, whereas Ctcf knockout resulted in ≈99% abolition of global chromatin loops. Disease gene expression changes correlated instead with differential histone H3K27-acetylation enrichment at their respective proximal and distal interacting genomic enhancers confined within these static chromatin structures. Moreover, coregulated genes were mapped out as interconnected gene sets on the basis of their multigene 3D interactions. CONCLUSIONS: This work reveals a more stable genome-wide chromatin framework than previously described. Myocardial stress-gene transcription responds instead through H3K27-acetylation enhancer enrichment dynamics and gene networks of coregulation. Robust and intact CTCF looping is required for the induction of a rapid and accurate stress response.


Asunto(s)
Estenosis de la Válvula Aórtica/genética , Factor de Unión a CCCTC/metabolismo , Cromatina/metabolismo , Insuficiencia Cardíaca/genética , Miocitos Cardíacos/fisiología , Acetilación , Animales , Factor de Unión a CCCTC/genética , Células Cultivadas , Ensamble y Desensamble de Cromatina , Modelos Animales de Enfermedad , Epigénesis Genética , Regulación de la Expresión Génica , Ontología de Genes , Redes Reguladoras de Genes , Histonas/metabolismo , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Estrés Fisiológico
3.
Oxid Med Cell Longev ; 2022: 9180267, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35391931

RESUMEN

Doxorubicin is an anthracycline widely used for the treatment of various cancers; however, the drug has a common deleterious side effect, namely a dose-dependent cardiotoxicity. Doxorubicin treatment increases the generation of reactive oxygen species, which leads to oxidative stress in the cardiac cells and ultimately DNA damage and cell death. The most common DNA lesion produced by oxidative stress is 7,8-dihydro-8-oxoguanine (8-oxoguanine), and the enzyme responsible for its repair is the 8-oxoguanine DNA glycosylase (OGG1), a base excision repair enzyme. Here, we show that the OGG1 deficiency has no major effect on cardiac function at baseline or with pressure overload; however, we found an exacerbation of cardiac dysfunction as well as a higher mortality in Ogg1 knockout mice treated with doxorubicin. Our transcriptomic analysis also showed a more extensive dysregulation of genes in the hearts of Ogg1 knockout mice with an enrichment of genes involved in inflammation. These results demonstrate that OGG1 attenuates doxorubicin-induced cardiotoxicity and thus plays a role in modulating drug-induced cardiomyopathy.


Asunto(s)
ADN Glicosilasas , Cardiopatías , Animales , Cardiotoxicidad , Daño del ADN , ADN Glicosilasas/genética , ADN Glicosilasas/metabolismo , Reparación del ADN , Doxorrubicina/efectos adversos , Guanina/análogos & derivados , Ratones , Ratones Noqueados , Estrés Oxidativo
4.
Nat Commun ; 12(1): 4722, 2021 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-34354059

RESUMEN

Mutations in the LaminA gene are a common cause of monogenic dilated cardiomyopathy. Here we show that mice with a cardiomyocyte-specific Lmna deletion develop cardiac failure and die within 3-4 weeks after inducing the mutation. When the same Lmna mutations are induced in mice genetically deficient in the LINC complex protein SUN1, life is extended to more than one year. Disruption of SUN1's function is also accomplished by transducing and expressing a dominant-negative SUN1 miniprotein in Lmna deficient cardiomyocytes, using the cardiotrophic Adeno Associated Viral Vector 9. The SUN1 miniprotein disrupts binding between the endogenous LINC complex SUN and KASH domains, displacing the cardiomyocyte KASH complexes from the nuclear periphery, resulting in at least a fivefold extension in lifespan. Cardiomyocyte-specific expression of the SUN1 miniprotein prevents cardiomyopathy progression, potentially avoiding the necessity of developing a specific therapeutic tailored to treating each different LMNA cardiomyopathy-inducing mutation of which there are more than 450.


Asunto(s)
Cardiomiopatía Dilatada/genética , Lamina Tipo A/genética , Lamina Tipo A/metabolismo , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Animales , Cardiomiopatía Dilatada/patología , Cardiomiopatía Dilatada/fisiopatología , Dependovirus/genética , Femenino , Humanos , Lamina Tipo A/deficiencia , Masculino , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas Asociadas a Microtúbulos/deficiencia , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Transducción Genética
5.
Cardiovasc Res ; 115(14): 1998-2007, 2019 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-31114845

RESUMEN

AIMS: We and others have previously described the expression landscape of circular RNA (circRNA) in mouse and human hearts. However, the functional relevance of many of these abundantly expressed cardiomyocyte circRNA remains to be fully explored. Among the most abundant circRNA, one stems from the sodium-calcium exchanger gene, Slc8a1, exon 2 locus. Because of its very high abundance in cardiomyocytes we investigated the possible role of circSlc8a1 in the heart. METHODS AND RESULTS: We performed a miRNA screen using an array of 752 miRNAs with RNA recovered from a pull-down of endogenous cardiomyocyte circSlc8a1. MicroRNA-133a (miR-133a), with a prior well-recognized role in cardiac hypertrophy, was highly enriched in the fraction of circSlc8a1 pull-down (adjusted P-value < 0.001). We, therefore, followed-up validation of the functional interaction between circSlc8a1 and miR-133 using luciferase assays and reciprocal pull-down assays. In vivo, AAV9-mediated RNAi knockdown of circSlc8a1 attenuates cardiac hypertrophy from pressure-overload, whereas forced cardiomyocyte specific overexpression of circSlc8a1 resulted in heart failure. Molecular analyses showed targets of miR-133a including serum response factor (Srf), connective tissue growth factor (Ctgf), adrenoceptor beta 1 (Adrb1), and adenylate cyclase 6 (Adcy6) to be regulated by circSlc8a1-directed intervention of knockdown and overexpression. CONCLUSION: In summary, circSlc8a1 can function as an endogenous sponge for miR-133a in cardiomyocytes. We propose that circSlc8a1 may serve as a novel therapeutic target for cardiac hypertrophy.


Asunto(s)
Cardiomegalia/metabolismo , Insuficiencia Cardíaca/metabolismo , MicroARNs/metabolismo , Miocitos Cardíacos/metabolismo , ARN Circular/metabolismo , Intercambiador de Sodio-Calcio/genética , Adenilil Ciclasas/genética , Adenilil Ciclasas/metabolismo , Animales , Cardiomegalia/genética , Cardiomegalia/fisiopatología , Cardiomegalia/prevención & control , Células Cultivadas , Factor de Crecimiento del Tejido Conjuntivo/genética , Factor de Crecimiento del Tejido Conjuntivo/metabolismo , Modelos Animales de Enfermedad , Exones , Regulación de la Expresión Génica , Insuficiencia Cardíaca/genética , Insuficiencia Cardíaca/fisiopatología , Ratones , MicroARNs/genética , ARN Circular/genética , Receptores Adrenérgicos beta 1/genética , Receptores Adrenérgicos beta 1/metabolismo , Factor de Respuesta Sérica/genética , Factor de Respuesta Sérica/metabolismo , Transducción de Señal , Volumen Sistólico , Función Ventricular Izquierda , Remodelación Ventricular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA