Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 239
Filtrar
Más filtros

País/Región como asunto
Intervalo de año de publicación
1.
Bioorg Chem ; 148: 107460, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38781668

RESUMEN

A series of genipin derivatives were designed and synthesized as potential inhibitors targeted KRAS G12D mutation. The majority of these compounds demonstrated potential antiproliferative effects against KRAS G12D mutant tumor cells (CT26 and A427). Notably, seven compounds exhibited the anticancer effects with IC50 values ranging from 7.06 to 9.21 µM in CT26 (KRASG12D) and A427 (KRASG12D) cells and effectively suppressed the colony formation of CT26 cells. One representative compound SK12 was selected for further investigation into biological activity and action mechanisms. SK12 markedly induced apoptosis in CT26 cells in a concentration-dependent manner. Moreover, SK12 elevated the levels of reactive oxygen species (ROS) in tumor cells and exhibited a modulatory effect on the KRAS signaling pathway, thereby inhibiting the activation of downstream phosphorylated proteins. The binding affinity of SK12 to KRAS G12D protein was further confirmed by the surface plasmon resonance (SPR) assay with a binding KD of 157 µM. SK12 also exhibited notable anticancer efficacy in a nude mice tumor model. The relative tumor proliferation rate (T/C) of the experimental group (50 mg/kg) was 31.04 % (P < 0.05), while maintaining a commendable safety profile.


Asunto(s)
Antineoplásicos , Proliferación Celular , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Iridoides , Ratones Desnudos , Proteínas Proto-Oncogénicas p21(ras) , Humanos , Iridoides/farmacología , Iridoides/química , Animales , Proteínas Proto-Oncogénicas p21(ras)/antagonistas & inhibidores , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/síntesis química , Proliferación Celular/efectos de los fármacos , Relación Estructura-Actividad , Ratones , Estructura Molecular , Apoptosis/efectos de los fármacos , Descubrimiento de Drogas , Línea Celular Tumoral , Mutación , Ratones Endogámicos BALB C , Neoplasias Experimentales/tratamiento farmacológico , Neoplasias Experimentales/patología , Neoplasias Experimentales/metabolismo
2.
J Obstet Gynaecol Can ; 46(5): 102406, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38331093

RESUMEN

OBJECTIVES: Nausea and vomiting in pregnancy (NVP) is a common condition that reduces the quality of life by negatively affecting work and family life, physical and mental health, and economic well-being. However, its risk factors remain unclear. This study aimed to explore the association between NVP and verbal rating scale (VRS)-measured dysmenorrhea and to explore potential protective factors. METHODS: This retrospective cohort study was conducted from June 2018 to December 2020 at Tongji Hospital in Wuhan. Information on baseline characteristics, pregnancy-related history, periconceptional micronutrient supplementation, and obstetric outcomes were collected. The severity of dysmenorrhea was assessed using VRS. RESULTS: A total of 443 pregnant women were recruited and divided into the NVP group (n = 76) and the control group (n = 367). A significant association was observed between NVP and VRS-measured dysmenorrhea (c2=10.038, P = 0.007). After adjusting for covariates, the association between moderate/severe dysmenorrhea and NVP remained significant (OR 2.384; 95% CI 1.104-5.148, P = 0.004). First-trimester docosahexaenoic acid supplement (OR 0.443; 95% CI 0.205-0.960, P = 0.039) may be beneficial in reducing the risk of NVP. CONCLUSIONS: Women with moderate to severe dysmenorrhea have a higher risk of experiencing NVP during the first trimester. Periconceptional docosahexaenoic acid supplementation may play a protective role.


Asunto(s)
Dismenorrea , Humanos , Femenino , Embarazo , Estudios Retrospectivos , Adulto , Náusea , Náuseas Matinales , Estudios de Cohortes , Complicaciones del Embarazo , China , Índice de Severidad de la Enfermedad , Vómitos
3.
Anal Chem ; 95(22): 8533-8540, 2023 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-37230941

RESUMEN

Cell electroporation is an important cell manipulation technology to artificially transfer specific extracellular components into cells. However, the consistency of substance transport during the electroporation process is still an issue due to the wide size distribution of the natural cells. In this study, a cell electroporation microfluidic chip based on a microtrap array is proposed. The microtrap structure was optimized for single-cell capture and electric field focusing. The effects of the cell size on the cell electroporation in the microchip were investigated through simulation and experiment methods using the giant unilamellar vesicle as the simplified cell model, and a numerical model of a uniform electric field was used as a comparison. Compared with the uniform electric field, a lower threshold electric field is required to induce electroporation and produces a higher transmembrane voltage on the cell under a specific electric field in the microchip, showing an improvement in cell viability and electroporation efficiency. The larger perforated area produced on the cells in the microchip under a specific electric field allows a higher substance transfer efficiency, and the electroporation results are less affected by the cell size, which is beneficial for improving substance transfer consistency. Furthermore, the relative perforation area increases with the decrease of the cell diameter in the microchip, which is exactly opposite to that in a uniform electric field. By manipulating the electric field applied to the microtrap individually, a consistent proportion of substance transfer during electroporation of cells with different sizes can be achieved.


Asunto(s)
Terapia de Electroporación , Electroporación , Electroporación/métodos , Análisis de Secuencia por Matrices de Oligonucleótidos , Microfluídica , Simulación por Computador
4.
BMC Psychiatry ; 23(1): 809, 2023 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-37936090

RESUMEN

BACKGROUND: Anomalies in regional homogeneity (ReHo) have been documented in patients with major depressive disorder (MDD) and sleep disturbances (SDs). This investigation aimed to scrutinize changes in ReHo in MDD patients with comorbid SD, and to devise potential diagnostic biomarkers for detecting sleep-related conditions in patients with MDD. METHODS: Patients with MDD and healthy controls underwent resting-state functional magnetic resonance imaging scans. SD severity was quantified using the 17-item Hamilton Rating Scale for Depression. Subsequent to the acquisition of imaging data, ReHo analysis was performed, and a support vector machine (SVM) method was employed to assess the utility of ReHo in discriminating MDD patients with SD. RESULTS: Compared with MDD patients without SD, MDD patients with SD exhibited increased ReHo values in the right posterior cingulate cortex (PCC)/precuneus, right median cingulate cortex, left postcentral gyrus (postCG), and right inferior temporal gyrus (ITG). Furthermore, the ReHo values in the right PCC/precuneus and ITG displayed a positive correlation with clinical symptoms across all patients. SVM classification results showed that a combination of abnormal ReHo in the left postCG and right ITG achieved an overall accuracy of 84.21%, a sensitivity of 81.82%, and a specificity of 87.50% in identifying MDD patients with SD from those without SD. CONCLUSION: We identified disrupted ReHo patterns in MDD patients with SD, and presented a prospective neuroimaging-based diagnostic biomarker for these patients.


Asunto(s)
Trastorno Depresivo Mayor , Trastornos del Sueño-Vigilia , Humanos , Trastorno Depresivo Mayor/complicaciones , Trastorno Depresivo Mayor/diagnóstico por imagen , Encéfalo/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Estudios Prospectivos , Sueño
5.
BMC Psychiatry ; 23(1): 289, 2023 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-37098479

RESUMEN

BACKGROUND: Previous studies discovered the presence of abnormal structures and functions in the brain regions of patients with obsessive-compulsive disorder (OCD). Nevertheless, whether structural changes in brain regions are coupled with alterations in dynamic functional connectivity (dFC) at rest in medicine-free patients with OCD remains vague. METHODS: Three-dimensional T1-weighed magnetic resonance imaging (MRI) and resting-state functional MRI were performed on 50 medicine-free OCD and 50 healthy controls (HCs). Firstly, the differences in gray matter volume (GMV) between OCD and HCs were compared. Then, brain regions with aberrant GMV were used as seeds for dFC analysis. The relationship of altered GMV and dFC with clinical parameters in OCD was explored using partial correlation analysis. Finally, support vector machine was applied to examine whether altered multimodal imaging data might be adopted to distinguish OCD from HCs. RESULTS: Our findings indicated that GMV in the left superior temporal gyrus (STG) and right supplementary motor area (SMA) was reduced in OCD, and the dFC between the left STG and the left cerebellum Crus I and left thalamus, and between the right SMA and right dorsolateral prefrontal cortex (DLPFC) and left precuneus was decreased at rest in OCD. The brain regions both with altered GMV and dFC values could discriminate OCD from HCs with the accuracy of 0.85, sensitivity of 0.90 and specificity of 0.80. CONCLUSION: The decreased gray matter structure coupling with dynamic function in the left STG and right SMA at rest may be crucial in the pathophysiology of OCD. TRIAL REGISTRATION: Study on the mechanism of brain network in obsessive-compulsive disorder with multi-model magnetic resonance imaging (registration date: 08/11/2017; registration number: ChiCTR-COC-17,013,301).


Asunto(s)
Sustancia Gris , Trastorno Obsesivo Compulsivo , Humanos , Sustancia Gris/diagnóstico por imagen , Sustancia Gris/patología , Corteza Cerebral/patología , Encéfalo , Lóbulo Parietal , Imagen por Resonancia Magnética , Trastorno Obsesivo Compulsivo/patología
6.
J Nanobiotechnology ; 21(1): 304, 2023 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-37644475

RESUMEN

Extracellular vesicles (EVs) play an important role in human and bovine milk composition. According to excellent published studies, it also exerts various functions in the gut, bone, or immune system. However, the effects of milk-derived EVs on skeletal muscle growth and performance have yet to be fully explored. Firstly, the current study examined the amino acids profile in human milk EVs (HME) and bovine milk EVs (BME) using targeted metabolomics. Secondly, HME and BME were injected in the quadriceps of mice for four weeks (1 time/3 days). Then, related muscle performance, muscle growth markers/pathways, and amino acids profile were detected or measured by grip strength analysis, rotarod performance testing, Jenner-Giemsa/H&E staining, Western blotting, and targeted metabolomics, respectively. Finally, HME and BME were co-cultured with C2C12 cells to detect the above-related indexes and further testify relative phenomena. Our findings mainly demonstrated that HME and BME significantly increase the diameter of C2C12 myotubes. HME treatment demonstrates higher exercise performance and muscle fiber densities than BME treatment. Besides, after KEGG and correlation analyses with biological function after HME and BME treatment, results showed L-Ornithine acts as a "notable marker" after HME treatment to affect mouse skeletal muscle growth or functions. Otherwise, L-Ornithine also significantly positively correlates with the activation of the AKT/mTOR pathway and myogenic regulatory factors (MRFs) and can also be observed in muscle and C2C12 cells after HME treatment. Overall, our study not only provides a novel result for the amino acid composition of HME and BME, but the current study also indicates the advantage of human milk on skeletal muscle growth and performance.


Asunto(s)
Vesículas Extracelulares , Leche Humana , Humanos , Animales , Ratones , Proteínas Proto-Oncogénicas c-akt , Proteínas Quinasas S6 Ribosómicas 70-kDa , Músculos , Serina-Treonina Quinasas TOR , Rendimiento Físico Funcional , Aminoácidos , Transducción de Señal
7.
J Asian Nat Prod Res ; 25(9): 842-848, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36562123

RESUMEN

Further investigation on the roots of Aconitum weixiense led to the isolation of two new bis-diterpenoid alkaloids, named as weisaconitines E and F (1-2), which were elucidated by IR, HR-ESI-MS, 1D- and 2D-NMR analyses. Their structures are characterized as denudatine-atisine-type bis-diterpenoid alkaloids.


Asunto(s)
Aconitum , Alcaloides , Diterpenos , Medicamentos Herbarios Chinos , Aconitum/química , Estructura Molecular , Alcaloides/química , Medicamentos Herbarios Chinos/química , Diterpenos/química , Raíces de Plantas/química
8.
Drug Dev Res ; 84(7): 1395-1410, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37583266

RESUMEN

Src homology-2 domain-containing protein tyrosine phosphatase-2 (SHP2) is a key regulatory factor in the cell cycle and its activating mutations play an important role in the development of various cancers, making it an important target for antitumor drugs. Due to the highly conserved amino acid sequence and positively charged nature of the active site of SHP2, it is difficult to discover inhibitors with high affinity for the catalytic site of SHP2 and sufficient cell permeability, making it considered an "undruggable" target. However, the discovery of allosteric regulation mechanisms provides new opportunities for transforming undruggable targets into druggable ones. Given the limitations of orthosteric inhibitors, SHP2 allosteric inhibitors have become a more selective and safer research direction. In this review, we elucidate the oncogenic mechanism of SHP2 and summarize the discovery methods of SHP2 allosteric inhibitors, providing new strategies for the design and improvement of SHP2 allosteric inhibitors.


Asunto(s)
Antineoplásicos , Neoplasias , Humanos , Proteína Tirosina Fosfatasa no Receptora Tipo 11/química , Proteína Tirosina Fosfatasa no Receptora Tipo 11/genética , Proteína Tirosina Fosfatasa no Receptora Tipo 11/metabolismo , Neoplasias/tratamiento farmacológico , Secuencia de Aminoácidos , Antineoplásicos/uso terapéutico , Ciclo Celular , Inhibidores Enzimáticos/farmacología
9.
Nano Lett ; 22(4): 1750-1758, 2022 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-35119870

RESUMEN

Metallic Zn as a promising anode material of aqueous batteries suffers from severe parasitic reactions and notorious dendrite growth. To address these issues, the desolvation and nucleation processes need to be carefully regulated. Herein, Zn foils coated by ZnF2-Ag nanoparticles (ZnF2-Ag@Zn) are used as a model to modulate the desolvation and nucleation processes by hybrid surfaces, where Ag has a strong affinity to Zn adatoms and ZnF2 shows an intense adsorption to H2O. This selective adsorption of different species on ZnF2 and Ag reduces the mutual interference between two species. Therefore, ZnF2-Ag@Zn exhibits the electrochemical performance much better than ZnF2@Zn or Ag@Zn. Even at -40 °C, the full cells using ZnF2-Ag@Zn demonstrate an ultralong lifespan of 5000 cycles with a capacity retention of almost 100%. This work provides new insights to improve the performance of Zn metal batteries, especially at low temperatures.


Asunto(s)
Nanopartículas del Metal , Zinc , Adsorción , Plata , Temperatura
10.
Int J Mol Sci ; 24(24)2023 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-38139444

RESUMEN

Maize has become one of the most widely grown grains in the world, and the stay-green mutant allows these plants to maintain their green leaves and photosynthetic potential for longer following anthesis than in non-mutated plants. As a result, stay-green plants have a higher production rate than non-stay-green varieties due to their prolonged grain-filling period. In this study, the candidate genes related to the visual stay-green at the maturation stage of maize were investigated. The F2 population was derived from the T01 (stay-green) and the Xin3 (non-stay-green) cross. Two bulked segregant analysis pools were constructed. According to the method of combining ED (Euclidean distance), Ridit (relative to an identified distribution unit), SmoothG, and SNP algorithms, a region containing 778 genes on chromosome 9 was recognized as the candidate region associated with the visual stay-green in maize. A total of eight modules were identified using WGCNA (weighted correlation network analysis), of which green, brown, pink, and salmon modules were significantly correlated with visual stay-green. BSA, combined with the annotation function, discovered 7 potential candidate genes, while WGCNA discovered 11 stay-green potential candidate genes. The candidate range was further reduced due through association analysis of BSA-seq and RNA-seq. We identified Zm00001eb378880, Zm00001eb383680, and Zm00001eb384100 to be the most likely candidate genes. Our results provide valuable insights into this new germplasm resource with reference to increasing the yield for maize.


Asunto(s)
Grano Comestible , Zea mays , RNA-Seq , Mapeo Cromosómico , Zea mays/genética , Grano Comestible/genética
11.
Angew Chem Int Ed Engl ; 62(38): e202310290, 2023 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-37522818

RESUMEN

Stable Zn anodes with a high utilization efficiency pose a challenge due to notorious dendrite growth and severe side reactions. Therefore, electrolyte additives are developed to address these issues. However, the additives are always consumed by the electrochemical reactions over cycling, affecting the cycling stability. Here, hexamethylphosphoric triamide (HMPA) is reported as an electrolyte additive for achieving stable cycling of Zn anodes. HMPA reshapes the solvation structures and promotes anion decomposition, leading to the in situ formation of inorganic-rich solid-electrolyte-interphase. More interestingly, this anion decomposition does not involve HMPA, preserving its long-term impact on the electrolyte. Thus, the symmetric cells with HMPA in the electrolyte survive ≈500 h at 10 mA cm-2 for 10 mAh cm-2 or ≈200 h at 40 mA cm-2 for 10 mAh cm-2 with a Zn utilization rate of 85.6 %. The full cells of Zn||V2 O5 exhibit a record-high cumulative capacity even under a lean electrolyte condition (E/C ratio=12 µL mAh-1 ), a limited Zn supply (N/P ratio=1.8) and a high areal capacity (6.6 mAh cm-2 ).

12.
Expert Rev Mol Med ; 24: e19, 2022 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-35535759

RESUMEN

The pandemic caused by severe acute respiratory syndrome coronavirus 2 is sweeping the world, threatening millions of lives and drastically altering our ways of living. According to current studies, failure to either activate or eliminate inflammatory responses timely and properly at certain stages could result in the progression of the disease. In other words, robust immune responses to coronavirus disease 2019 (COVID-19) are critical. However, they do not theoretically present in some special groups of people, including the young, the aged, patients with autoimmunity or cancer. Differences also do occur between men and women. Our immune system evolves to ensure delicate coordination at different stages of life. The innate immune cells mainly consisted of myeloid lineage cells, including neutrophils, basophils, eosinophils, dendritic cells and mast cells; they possess phagocytic capacity to different degrees at different stages of life. They are firstly recruited upon infection and may activate the adaptive immunity when needed. The adaptive immune cells, on the other way, are comprised mainly of lymphoid lineages. As one grows up, the adaptive immunity matures and expands its memory repertoire, accompanied by an adjustment in quantity and quality. In this review, we would summarise and analyse the immunological characteristics of these groups from the perspective of the immune system 'evolution' as well as 'revolution' that has been studied and speculated so far, which would aid the comprehensive understanding of COVID-19 and personalised-treatment strategy.


Asunto(s)
COVID-19 , Inmunidad Adaptativa , Anciano , Femenino , Humanos , Sistema Inmunológico , Inmunidad Innata , SARS-CoV-2
13.
Electrophoresis ; 43(21-22): 2165-2174, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35730632

RESUMEN

A microfluidic device was designed and fabricated to capture single microparticles and cells by using hydrodynamic force and selectively release the microparticles and cells of interest via negative dielectrophoresis by activating selected individual microelectrodes. The trap microstructure was optimized based on numerical simulation of the electric field as well as the flow field. The capture and selective release functions of the device were verified by multi-types microparticles with different diameters and K562 cells. The capture efficiencies/release efficiencies were 95.55% ± 0.43%/96.41% ± 1.08% and 91.34% ± 0.01%/93.67% ± 0.36% for microparticles and cells, respectively. By including more traps and microelectrodes, the device can achieve high throughput and realize the visual separation of microparticles/cells of interest in a large number of particle/cell groups.


Asunto(s)
Técnicas Analíticas Microfluídicas , Microfluídica , Dispositivos Laboratorio en un Chip , Hidrodinámica , Microelectrodos
14.
Nutr Cancer ; 74(6): 1976-1985, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34668830

RESUMEN

To determine the association between fish intake and dietary polyunsaturated fatty acids (PUFA) and incidence of lung cancer. We systematically reviewed and meta-analyzed all available studies to quantify the associations of fish and PUFA consumption with risk of lung cancer. Relative risk (RR) with 95% confidence interval (CI) was calculated. 13 population-based prospective cohort studies involving 1,785,000 participants and two randomized control trials were included. Our study demonstrated that dietary PUFA significant reduced risk of lung cancer for men (RR 0.99, 95%CI 0.98 to 1.00) and the U.S. population (RR 0.99, 95%CI 0.98 to 1.00). Dose-response analysis indicated that a 5 g/day increment of dietary PUFA was associated with 5% lower risk of lung cancer (RR 0.95, 95%CI 0.91 to 0.99). In addition, PUFA supplementation is significant improved overall survival in patients with lung cancer (RR 1.98, 95%CI 1.09 to 3.59). Our study showed an inverse association between dietary PUFA and risk of lung cancer in males and among the U.S. population. Although smoking cessation is the single biggest factor associated with lung cancer risk reduction, this study adds to a growing body of evidence that diet may have a role in modestly reducing lung cancer risk.


Asunto(s)
Ácidos Grasos Omega-3 , Neoplasias Pulmonares , Animales , Dieta , Ingestión de Alimentos , Ácidos Grasos Insaturados , Femenino , Humanos , Neoplasias Pulmonares/epidemiología , Neoplasias Pulmonares/etiología , Neoplasias Pulmonares/prevención & control , Masculino , Estudios Prospectivos
15.
Future Oncol ; 18(17): 2127-2139, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35414207

RESUMEN

Aim: To identify clinical and genetic variants associated with early-onset cardiac toxicity with a low cumulative dose of chemotherapy drugs in breast cancer. Methods: A total of 388 recruited patients completed routine blood, liver and kidney function, D-dimer, troponin T, brain natriuretic peptide (BNP) or N-terminal prohormone of BNP, ECG and echocardiography tests before and after adjuvant chemotherapy. 25 single-nucleotide polymorphisms (SNPs) were tested. Results: A total of 277 adjuvant chemotherapy-related cardiac toxicity events were recorded in 180 patients (46.4%). Anthracycline-containing chemotherapy (odds ratio: 1.848; 95% CI: 1.135-3.008; p = 0.014) and the SLC28A3 rs885004 GG genotype (odds ratio: 2.034; 95% CI: 1.189-3.479; p = 0.010) were found to be associated with overall cardiac toxicity. The final predictive risk model consisting of clinical risk factors and SNPs was better than SNP alone (p = 0.006) or clinical risk factor alone (p = 0.065). Conclusion: On the basis of clinical factors, a prediction model with genetic susceptibility factors can better predict early-onset cardiac toxicity.


Asunto(s)
Neoplasias de la Mama , Cardiotoxicidad , Antraciclinas/efectos adversos , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Cardiotoxicidad/etiología , Cardiotoxicidad/genética , Quimioterapia Adyuvante/efectos adversos , Femenino , Humanos , Péptido Natriurético Encefálico/uso terapéutico , Volumen Sistólico
16.
BMC Psychiatry ; 22(1): 462, 2022 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-36221076

RESUMEN

BACKGROUND: Brain functional abnormalities at rest have been observed in obsessive-compulsive disorder (OCD). However, whether and how anatomical distance influences functional connectivity (FC) at rest is ambiguous in OCD. METHODS: Using resting-state functional magnetic resonance imaging data, we calculated the FC of each voxel in the whole-brain and divided FC into short- and long-range FCs in 40 medicine-free patients with OCD and 40 healthy controls (HCs). A support vector machine (SVM) was used to determine whether the altered short- and long-range FCs could be utilized to distinguish OCD from HCs. RESULTS: Patients had lower short-range positive FC (spFC) and long-range positive FC (lpFC) in the left precentral/postcentral gyrus (t = -5.57 and -5.43; P < 0.05, GRF corrected) and higher lpFC in the right thalamus/caudate, left thalamus, left inferior parietal lobule (IPL) and left cerebellum CrusI/VI (t = 4.59, 4.61, 4.41, and 5.93; P < 0.05, GRF corrected). Furthermore, lower spFC in the left precentral/postcentral gyrus might be used to distinguish OCD from HCs with an accuracy of 80.77%, a specificity of 81.58%, and a sensitivity of 80.00%. CONCLUSION: These findings highlight that anatomical distance has an effect on the whole-brain FC patterns at rest in OCD. Meanwhile, lower spFC in the left precentral/postcentral gyrus might be applied in distinguishing OCD from HCs.


Asunto(s)
Mapeo Encefálico , Trastorno Obsesivo Compulsivo , Encéfalo/diagnóstico por imagen , Mapeo Encefálico/métodos , Humanos , Imagen por Resonancia Magnética/métodos , Trastorno Obsesivo Compulsivo/diagnóstico por imagen , Tálamo
17.
Angew Chem Int Ed Engl ; 61(52): e202212839, 2022 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-36321938

RESUMEN

Zn metal as one of promising anode materials for aqueous batteries suffers from notorious dendrite growth, serious Zn corrosion and hydrogen evolution. Here, a bifunctional electrolyte additive, N-methyl pyrrolidone (NMP), is developed to improve the electrochemical performance of Zn anode. NMP not only alters the solvation structure of Zn2+ , but also in situ produces a dense N-rich solid-electrolyte-interphase layer on Zn foils. This layer protects Zn foils from corrosive electrolytes and benefits the uniform plating/stripping of Zn. Hence, the asymmetrical cells with NMP in the electrolyte retain a high coulombic efficiency of 99.8 % over 1000 cycles. The symmetric cells survive ≈200 h for 10 mAh cm-2 at a high Zn utilization of 85.6 %. The full cells of Zn||MnO2 show an impressive cumulative capacity even with lean electrolyte (E/C ratio=10 µL mAh-1 ), limited Zn supply (N/P ratio=2.3) and high areal capacity (5.0 mAh cm-2 ).

18.
Mol Cell Biochem ; 476(1): 93-107, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-32845436

RESUMEN

Mesenchymal stem cells (MSCs) can alleviate acute respiratory distress syndrome (ARDS), but the mechanisms involved are unclear, especially about their specific effects on cellular mitochondrial respiratory function. Thirty mice were allocated into the Control, LPS, and LPS + Bone marrow mesenchymal stem cell (BMSC) group (n = 10/group). Mouse alveolar epithelial cells (MLE-12) and macrophage cells (RAW264.7) were divided into the same groups. Pathological variation, inflammation-related factors, reactive oxygen species (ROS), ATP levels, and oxygen consumption rate (OCR) were analyzed. Pathologic features of ARDS were observed in the LPS group and were significantly alleviated by BMSCs. The trend in inflammation-related factors among the three groups was the LPS group > LPS + BMSC group > Control group. In the MLE-12 co-culture system, IL-6 was increased in the LPS group but not significantly reduced in the LPS + BMSC group. In the RAW264.7 co-culture system, IL-1ß, TNF-α, and IL-10 levels were all increased in the LPS group, IL-1ß and TNF-α levels were reduced by BMSCs, while IL-10 level kept increasing. ROS and ATP levels were increased and decreased respectively in both MLE-12 and RAW264.7 cells in the LPS groups but reversed by BMSCs. Basal OCR, ATP-linked OCR, and maximal OCR were lower in the LPS groups. Impaired basal OCR and ATP-linked OCR in MLE-12 cells were partially restored by BMSCs, while impaired basal OCR and maximal OCR in RAW264.7 cells were restored by BMSCs. BMSCs improved the mitochondrial respiration dysfunction of macrophages and alveolar epithelial cells induced by LPS, alleviated lung tissue injury, and inflammatory response in a mouse model of ARDS.


Asunto(s)
Epitelio/metabolismo , Células Madre Mesenquimatosas/citología , Mitocondrias/metabolismo , Alveolos Pulmonares/metabolismo , Síndrome de Dificultad Respiratoria/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Células de la Médula Ósea/citología , Técnicas de Cocultivo , Inflamación , Interleucina-10/metabolismo , Interleucina-6/metabolismo , Lipopolisacáridos/metabolismo , Lesión Pulmonar/metabolismo , Macrófagos/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Consumo de Oxígeno , Células RAW 264.7
19.
Exp Mol Pathol ; 120: 104631, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33744280

RESUMEN

BACKGROUND: Preeclampsia is a life-threatening hypertensive disorder during pregnancy, while underlying pathogenesis and its diagnosis are incomplete. METHODS: In this study, we utilized the Robust Rank Aggregation method to integrate 6 eligible preeclampsia microarray datasets from Gene Expression Omnibus database. We used linear regression to assess the associations between significant differentially expressed genes (DEGs) and blood pressure. Functional annotation, protein-protein interaction, Gene Set Enrichment Analysis (GSEA) and single sample GSEA were employed for investigating underlying pathogenesis in preeclampsia. RESULTS: We filtered 52 DEGs and further screened for 5 hub genes (leptin, pappalysin 2, endoglin, fms related receptor tyrosine kinase 1, tripartite motif containing 24) that were positively correlated with both systolic blood pressure and diastolic blood pressure. Receiver operating characteristic indicated that hub genes were potential biomarkers for diagnosis and prognosis in preeclampsia. GSEA for single hub gene revealed that they were all closely related to angiogenesis and estrogen response in preeclampsia. Moreover, single sample GSEA showed that the expression levels of 5 hub genes were correlated with those of immune cells in immunologic microenvironment at maternal-fetal interface. CONCLUSIONS: These findings provide new insights into underlying pathogenesis in preeclampsia; 5 hub genes were identified as biomarkers for diagnosis and prognosis in preeclampsia.


Asunto(s)
Biomarcadores/análisis , Biología Computacional/métodos , Regulación de la Expresión Génica , Redes Reguladoras de Genes , Análisis por Micromatrices/métodos , Preeclampsia/patología , Mapas de Interacción de Proteínas , Biomarcadores/metabolismo , Femenino , Perfilación de la Expresión Génica , Humanos , Preeclampsia/genética , Preeclampsia/metabolismo , Embarazo , Pronóstico
20.
Bioorg Chem ; 115: 105271, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34426155

RESUMEN

In this study, a novel batch of thiazole-containing mitochondrial targeting agents were designed and synthesized. Four kinds of mitochondrial targeting moieties and six kinds of linkers were designed. Their structures were confirmed by NMR and HR-MS. The screening of antiproliferative activity revealed that most compounds displayed cytotoxicity on HeLa cancer cell. In particular, D1 has an IC50 value of 35.32 µmol·L-1 against HeLa cell. In addition, cellular respiratory activities were also tested on HeLa cancer cells. D1 had a basal oxygen consumption rate of 8.84 pmol·s-1·mL-1. Also, D1 inhibited the mitochondrial respiration of HeLa cell significantly at 5 µmol·L-1, as well as a complete inhibitory of oxygen consumption for cellular ATP coupling. Furthermore, the pKa, logP, and logD under different pH conditions of all the compounds were calculated by the ACD/Percepta-PhysChem Suite, and the results manifested the correlation between physicochemical properties and chemical activity of compounds. The results identify D1 as a promising mitochondria inhibitor and anticancer agent with appropriate physicochemical properties.


Asunto(s)
Antineoplásicos/farmacología , Diseño de Fármacos , Mitocondrias/efectos de los fármacos , Tiazoles/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/química , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Células HeLa , Humanos , Mitocondrias/metabolismo , Estructura Molecular , Relación Estructura-Actividad , Tiazoles/síntesis química , Tiazoles/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA