Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Plant Cell Physiol ; 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38727547

RESUMEN

Brassinosteroids (BRs) are a group of polyhydroxylated phytosterols that play essential roles in regulating plant growth and development as well as stress adaptation. It is worth noting that BRs do not function alone, but rather they crosstalk with other endogenous signaling molecules, including the phytohormones auxin, cytokinins (CKs), gibberellins (GAs), abscisic acid (ABA), ethylene (ET), jasmonates (JAs), salicylic acid (SA), and strigolactones (SLs), forming elaborate signaling networks to modulate plant growth and development. BRs interact with other phytohormones mainly by regulating each others' homeostasis, transport, or signaling pathway at the transcriptional and posttranslational levels. In this review, we focus our attention on current research progress in BR signal transduction and the crosstalk between BRs and other phytohormones.

2.
Plant Physiol ; 193(2): 1561-1579, 2023 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-37467431

RESUMEN

An apical hook is a special structure formed during skotomorphogenesis in dicotyledonous plant species. It is critical for protecting the shoot apical meristem from mechanical damage during seed germination and hypocotyl elongation in soil. Brassinosteroid (BR) and jasmonate (JA) phytohormones antagonistically regulate apical hook formation. However, the interrelationship between BRs and JAs in this process has not been well elucidated. Here, we reveal that JAs repress BRs to regulate apical hook development in Arabidopsis (Arabidopsis thaliana). Exogenous application of methyl jasmonate (MeJA) repressed the expression of the rate-limiting BR biosynthetic gene DWARF4 (DWF4) in a process relying on 3 key JA-dependent transcription factors, MYC2, MYC3, and MYC4. We demonstrated that MYC2 interacts with the critical BR-activated transcription factor BRASSINAZOLE RESISTANT 1 (BZR1), disrupting the association of BZR1 with its partner transcription factors, such as those of the PHYTOCHROME INTERACTING FACTOR (PIF) family and downregulating the expression of their target genes, such as WAVY ROOT GROWTH 2 (WAG2), encoding a protein kinase essential for apical hook development. Our results indicate that JAs not only repress the expression of BR biosynthetic gene DWF4 but, more importantly, attenuate BR signaling by inhibiting the transcriptional activation of BZR1 by MYC2 during apical hook development.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Arabidopsis/metabolismo , Brasinoesteroides/metabolismo , Arabidopsis/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Regulación de la Expresión Génica de las Plantas
3.
Int Arch Allergy Immunol ; 185(2): 182-189, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37980884

RESUMEN

INTRODUCTION: Comorbidities, such as gastroesophageal reflux disease (GERD), are common in patients with rhinosinusitis (RS). However, the link between RS and GERD has not been fully understood. This study aimed to investigate the causal relationship between GERD and acute (ARS) or chronic RS (CRS), providing references for the pathogenesis and management of RS. METHODS: The data were obtained from the Integrative Epidemiology Unit Open GWAS project and FinnGen. A total of 972,838 individuals were included. The inverse variance-weighted (IVW) method was applied to obtain the primary results of the study. Weighted median, MR-Egger, and mode-based methods were used to determine the robustness of the results. Cochran's Q statistic and MR-Egger method were applied to detect heterogeneity and pleiotrophy in instrumental variables (IVs). Other sensitivity analyses included MR-PRESSO and leave-one-out analysis. RESULTS: The MR study showed that GERD was associated with an increased risk of CRS (OR: 1.36, 95% CI: 1.18-1.57, p < 0.001). The results of other analysis methods were broadly consistent with the IVW estimate. No heterogeneity was detected by Cochran's Q test (p = 0.061) and MR-PRESSO (p = 0.074). No horizontal pleiotropy was shown in IVs (p = 0.700). GERD was also associated with an increased risk of ARS (OR: 1.31, 95% CI: 1.17-1.48, p < 0.001). Some analytical results were inconsistent with the IVW estimate. No heterogeneity and pleiotropy were observed. There was no sufficient evidence for a reverse causal effect of RS on GERD. CONCLUSION: Our study supported that GERD promoted the risk of CRS and may be a potential risk factor for ARS. This provides additional support for further investigation into the mechanisms of GERD on RS.


Asunto(s)
Reflujo Gastroesofágico , Rinosinusitis , Humanos , Análisis de la Aleatorización Mendeliana , Reflujo Gastroesofágico/complicaciones , Reflujo Gastroesofágico/epidemiología , Factores de Riesgo , Estudio de Asociación del Genoma Completo
4.
Int J Mol Sci ; 25(15)2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39125682

RESUMEN

Brassinosteroids (BRs) are an essential group of plant hormones regulating numerous aspects of plant growth, development, and stress responses. BRI1, along with its co-receptor BAK1, are involved in brassinosteroid sensing and early events in the BR signal transduction cascade. Mutational analysis of a particular gene is a powerful strategy for investigating its biochemical role. Molecular genetic studies, predominantly in Arabidopsis thaliana, but progressively in numerous other plants, have identified many mutants of the BRI1 gene and its orthologs to gain insight into its structure and function. So far, the plant kingdom has identified up to 40 bri1 alleles in Arabidopsis and up to 30 bri1 orthologs in different plants. These alleles exhibit phenotypes that are identical in terms of development and growth. Here, we have summarized bri1 alleles in Arabidopsis and its orthologs present in various plants including monocots and dicots. We have discussed the possible mechanism responsible for the specific allele. Finally, we have briefly debated the importance of these alleles in the research field and the agronomically valuable traits they offer to improve plant varieties.


Asunto(s)
Alelos , Proteínas de Arabidopsis , Arabidopsis , Brasinoesteroides , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Brasinoesteroides/metabolismo , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Regulación de la Expresión Génica de las Plantas , Mutación , Transducción de Señal/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
5.
Angew Chem Int Ed Engl ; 63(21): e202315802, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38453646

RESUMEN

The development of nonpyrolytic catalysts featuring precisely defined active sites represents an effective strategy for investigating the fundamental relationship between the catalytic activity of oxygen reduction reaction (ORR) catalysts and their local coordination environments. In this study, we have synthesized a series of model electrocatalysts with well-defined CoN4 centers and nonplanar symmetric coordination structures. These catalysts were prepared by a sequential process involving the chelation of cobalt salts and 1,10-phenanthroline-based ligands with various substituent groups (phen(X), where X=OH, CH3, H, Br, Cl) onto covalent triazine frameworks (CTFs). By modulating the electron-donating or electron-withdrawing properties of the substituent groups on the phen-based ligands, the electron density surrounding the CoN4 centers was effectively controlled. Our results demonstrated a direct correlation between the catalytic activity of the CoN4 centers and the electron-donating ability of the substituent group on the phenanthroline ligands. Notably, the catalyst denoted as BCTF-Co-phen(OH), featuring the electron-donating OH group, exhibited the highest ORR catalytic activity. This custom-crafted catalyst achieved a remarkable half-wave potential of up to 0.80 V vs. RHE and an impressive turnover frequency (TOF) value of 47.4×10-3 Hz at 0.80 V vs. RHE in an alkaline environment.

6.
New Phytol ; 238(1): 186-201, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36564978

RESUMEN

As the seed precursor, the ovule produces the female gametophyte (or embryo sac), and the subsequent double fertilization occurs in it. The integuments emerge sequentially from the integument primordia at the early stages of ovule development and finally enwrap the embryo sac gradually during gametogenesis, protecting and nursing the embryo sac. However, the mechanisms regulating integument development are still obscure. In this study, we show that SOMATIC EMBRYOGENESIS RECEPTOR-LIKE KINASES (SERKs) play essential roles during integument development in Arabidopsis thaliana. The serk1/2/3 triple mutant shows arrested integuments and abnormal embryo sacs, similar defects also found in the triple loss-of-function mutants of ERECTA family (ERf) genes. Ovules of serk1/2/3 er erl1/2 show defects similar to er erl1/2 and serk1/2/3. Results of yeast two-hybrid analyses, bimolecular fluorescence complementation (BiFC) analyses, and co-immunoprecipitation assays demonstrated that SERKs interact with ERf, which depends on EPIDERMAL PATTERNING FACTOR-LIKE (EPFL) family small peptides. The sextuple mutant epfl1/2/3/4/5/6 shows integument defects similar to both of er erl1/2 and serk1/2/3. Our results demonstrate that ERf-SERK-mediated EPFL signaling orchestrates the development of the female gametophyte and the surrounding sporophytic integuments.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Transducción de Señal , Reproducción , Óvulo Vegetal/metabolismo , Regulación de la Expresión Génica de las Plantas
7.
Int J Mol Sci ; 23(17)2022 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-36077547

RESUMEN

The BES1/BZR1 family is a plant-specific small group of transcription factors possessing a non-canonical bHLH domain. Genetic and biochemical analyses within the last two decades have demonstrated that members of this family are key transcription factors in regulating the expression of brassinosteroid (BR) response genes. Several recent genetic and evolutionary studies, however, have clearly indicated that the BES1/BZR1 family transcription factors also function in regulating several aspects of plant development via BR-independent pathways, suggesting they are not BR specific. In this review, we summarize our current understanding of this family of transcription factors, the mechanisms regulating their activities, DNA binding motifs, and target genes. We selectively discuss a number of their biological functions via BR-dependent and particularly independent pathways, which were recently revealed by loss-of-function genetic analyses. We also highlight a few possible future directions.


Asunto(s)
Proteínas de Arabidopsis , Brasinoesteroides , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Brasinoesteroides/metabolismo , Regulación de la Expresión Génica de las Plantas , Desarrollo de la Planta/genética , Transducción de Señal/fisiología , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
8.
Plant Physiol ; 184(2): 837-851, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32651188

RESUMEN

SMALL AUXIN-UP RNAs (SAURs) comprise the largest family of early auxin response genes. Some SAURs have been reported to play important roles in plant growth and development, but their functional relationships with auxin signaling remain unestablished. Here, we report Arabidopsis (Arabidopsis thaliana) SAUR15 acts downstream of the auxin response factors ARF6,8 and ARF7,19 to regulate auxin signaling-mediated lateral root (LR) and adventitious root (AR) formation. The loss-of-function mutant saur15-1 exhibits fewer LRs and ARs. By contrast, plants overexpressing SAUR15 exhibit more LRs and ARs. We find that the SAUR15 promoter contains four tandem auxin-responsive elements, which are directly bound by ARF6 and ARF7 and are essential for SAUR15 expression. LR and AR impairment in arf6 and arf7 mutants is partially reduced by ectopic expression of SAUR15 Additionally, we demonstrate that the ARF6,7-upregulated SAUR15 promotes LR and AR development using two mechanisms. On the one hand, SAUR15 interacts with PP2C-D subfamily type 2C protein phosphatases to inhibit their activities, thereby stimulating plasma membrane H+-ATPases, which drives cell expansion and facilitates LR and AR formation. On the other hand, SAUR15 promotes auxin accumulation, potentially by inducing the expression of auxin biosynthesis genes. A resulting increase in free auxin concentration likely triggers LR and AR formation, forming a feedback loop. Our study provides insights and a better understanding of how SAURs function at the molecular level in regulating auxin-mediated LR and AR development.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Proteínas de Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Arabidopsis/genética , Ácidos Indolacéticos/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/genética , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Organogénesis de las Plantas/genética , Organogénesis de las Plantas/fisiología
9.
J Integr Plant Biol ; 63(7): 1353-1366, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33764637

RESUMEN

Brassinosteroids (BRs) are a group of steroidal phytohormones, playing critical roles in almost all physiological aspects during the life span of a plant. In Arabidopsis, BRs are perceived at the cell surface, triggering a reversible phosphorylation-based signaling cascade that leads to the activation and nuclear accumulation of a family of transcription factors, represented by BES1 and BZR1. Protein farnesylation is a type of post-translational modification, functioning in many important cellular processes. Previous studies demonstrated a role of farnesylation in BR biosynthesis via regulating the endoplasmic reticulum localization of a key bassinolide (BL) biosynthetic enzyme BR6ox2. Whether such a process is also involved in BR signaling is not understood. Here, we demonstrate that protein farnesylation is involved in mediating BR signaling in Arabidopsis. A loss-of-function mutant of ENHANCED RESPONSE TO ABA 1 (ERA1), encoding a ß subunit of the protein farnesyl transferase holoenzyme, can alter the BL sensitivity of bak1-4 from a reduced to a hypersensitive level. era1 can partially rescue the BR defective phenotype of a heterozygous mutant of bin2-1, a gain-of-function mutant of BIN2 which encodes a negative regulator in the BR signaling. Our genetic and biochemical analyses revealed that ERA1 plays a significant role in regulating the protein stability of BES1.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Brasinoesteroides/metabolismo , Factores de Transcripción/metabolismo , Regulación de la Expresión Génica de las Plantas , Prenilación de Proteína , Transducción de Señal/fisiología , Esteroides Heterocíclicos/metabolismo
10.
Int J Mol Sci ; 21(8)2020 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-32326491

RESUMEN

Plant adaptations to changing environments rely on integrating external stimuli into internal responses. Brassinosteroids (BRs), a group of growth-promoting phytohormones, have been reported to act as signal molecules mediating these processes. BRs are perceived by cell surface receptor complex including receptor BRI1 and coreceptor BAK1, which subsequently triggers a signaling cascade that leads to inhibition of BIN2 and activation of BES1/BZR1 transcription factors. BES1/BZR1 can directly regulate the expression of thousands of downstream responsive genes. Recent studies in the model plant Arabidopsis demonstrated that BR biosynthesis and signal transduction, especially the regulatory components BIN2 and BES1/BZR1, are finely tuned by various environmental cues. Here, we summarize these research updates and give a comprehensive review of how BR biosynthesis and signaling are modulated by changing environments and how these changes regulate plant adaptive growth or stress tolerance.


Asunto(s)
Arabidopsis/metabolismo , Brasinoesteroides/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , Reguladores del Crecimiento de las Plantas/metabolismo , Estrés Fisiológico/genética , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Arabidopsis/microbiología , Proteínas de Arabidopsis/antagonistas & inhibidores , Proteínas de Arabidopsis/metabolismo , Brasinoesteroides/biosíntesis , Brasinoesteroides/química , Proteínas de Unión al ADN/metabolismo , Regulación de la Expresión Génica de las Plantas/inmunología , Luz , Proteínas Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal/genética , Transducción de Señal/inmunología , Estrés Fisiológico/fisiología , Temperatura , Factores de Transcripción/metabolismo , Agua/metabolismo
11.
Environ Geochem Health ; 42(9): 2609-2626, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31673916

RESUMEN

Karst groundwater, an important water source, is often highly influenced by human impacts, causing environmental damage and threats to human health. However, studies on the anthropogenic influences on the hydrogeochemical evolution of karst groundwater are relatively rare. To assess hydrogeochemical formation and evolution, we focused on a typical karst groundwater system (Jinan, China) which is composed of cold groundwater (av. temperature 13-17 °C), springs and geothermal water (av. temperature > 30 °C) and is significantly affected by human activities. The study was performed by means of water samples collecting and analyzing and isotope analysis (2H, 18O and 14C). The statistical analysis and inverse models were also applied to further understand geochemical processes and anthropogenic influences. The 2H, 18O and 14C results indicate that the cold karst groundwater is easily influenced and contaminated by the local environment, while geothermal water is relatively old with a slow rate of recharge. The hydrochemical types of cold karst groundwater are mainly HCO3-Ca and HCO3·SO4-Ca, while geothermal water hydrochemical types are SO4-Ca·Na and SO4-Ca. Groundwater Ca2+, Mg2+, HCO3- and SO42- are mainly controlled by carbonate equilibrium, gypsum dissolution and dedolomitization. Groundwater Na+, K+ and Cl- are mainly derived from halite dissolution, and in geothermal water, they are also affected by incongruent dissolution of albite and K-feldspar. Anthropogenic nitrogen produces ammonium resulting in nitrification and reduction in CO2(g) consumption and HCO3- release from carbonate dissolution. Principal component analysis and inverse models also indicate that nitrification and denitrification have significantly affected water-rock interactions. Our study suggests that karst groundwater quality is dominated by water-rock interactions and elucidates the influence of anthropogenic nitrogen. We believe that this paper will be a good reference point to study anthropogenic influences on the groundwater environment and to protect karst groundwater globally.


Asunto(s)
Agua Subterránea/análisis , Agua Subterránea/química , Radioisótopos de Carbono/análisis , Carbonatos/análisis , China , Cloruros/análisis , Monitoreo del Ambiente/métodos , Humanos , Hidrología/métodos , Hidrología/estadística & datos numéricos , Modelos Teóricos , Manantiales Naturales , Isótopos de Oxígeno/análisis , Potasio/análisis , Análisis de Componente Principal , Sodio/análisis , Temperatura , Contaminantes Químicos del Agua/análisis , Calidad del Agua
12.
Plant Physiol ; 174(3): 1881-1896, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28461403

RESUMEN

The identification and characterization of a mutational spectrum for a specific protein can help to elucidate its detailed cellular functions. BRASSINOSTEROID INSENSITIVE1 (BRI1), a multidomain transmembrane receptor-like kinase, is a major receptor of brassinosteroids in Arabidopsis (Arabidopsis thaliana). Within the last two decades, over 20 different bri1 mutant alleles have been identified, which helped to determine the significance of each domain within BRI1. To further understand the molecular mechanisms of BRI1, we tried to identify additional alleles via targeted induced local lesions in genomes. Here, we report our identification of 83 new point mutations in BRI1, including nine mutations that exhibit an allelic series of typical bri1 phenotypes, from subtle to severe morphological alterations. We carried out biochemical analyses to investigate possible mechanisms of these mutations in affecting brassinosteroid signaling. A number of interesting mutations have been isolated via this study. For example, bri1-702, the only weak allele identified so far with a mutation in the activation loop, showed reduced autophosphorylation activity. bri1-705, a subtle allele with a mutation in the extracellular portion, disrupts the interaction of BRI1 with its ligand brassinolide and coreceptor BRI1-ASSOCIATED RECEPTOR KINASE1. bri1-706, with a mutation in the extracellular portion, is a subtle defective mutant. Surprisingly, root inhibition analysis indicated that it is largely insensitive to exogenous brassinolide treatment. In this study, we found that bri1-301 possesses kinase activity in vivo, clarifying a previous report arguing that kinase activity may not be necessary for the function of BRI1. These data provide additional insights into our understanding of the early events in the brassinosteroid signaling pathway.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Mutagénesis/genética , Mutación/genética , Proteínas Quinasas/genética , Alelos , Secuencia de Aminoácidos , Arabidopsis/efectos de los fármacos , Arabidopsis/metabolismo , Proteínas de Arabidopsis/química , Brasinoesteroides/farmacología , Secuencia Conservada , Genes Dominantes , Prueba de Complementación Genética , Simulación de Dinámica Molecular , Fenotipo , Fosforilación/efectos de los fármacos , Proteínas Quinasas/química , Estructura Secundaria de Proteína , Transducción de Señal/efectos de los fármacos , Esteroides Heterocíclicos/farmacología
13.
Am J Otolaryngol ; 39(3): 277-281, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29530430

RESUMEN

PURPOSE: Chronic tonsillitis (TC) is among the most common bacterial diseases in pediatric otolaryngology. We aimed to evaluate the expression of glycogen synthase kinase 3ß (GSK-3ß) in a cohort of children with chronic tonsillitis (TC), and the correlation between GSK-3ß activity index and inflammatory profiles of TC. MATERIALS AND METHODS: The expression of GSK-3ß was comparably evaluated between children with TC (n = 26) and tonsillar hypertrophy (TH, n = 26). GSK-3ß expression was detected by immunohistochemistry, RT-qPCR, and Western blot. The inflammatory profiles between the TC and TH groups were also evaluated. RESULTS: We found that while GSK-3ß was highly expressed in both TC and TH groups, no significant difference were detected at mRNA and protein levels between groups. The protein level of p-GSK-3ß was significantly lower in the TC group as compared to the TH group. Additionally, the inflammatory markers, including NF-κB, T-bet, and IFN-γ were higher in the TC group compared to TH group. The GSK-3ß activation index was positively correlated with the levels of NF-κB, T-bet, and IFN-γ in the TC group. CONCLUSIONS: Our findings suggested that GSK-3ß activation index was demonstrated to be a clinically applicable indicator for chronic recurrent inflammation in pediatric TC.


Asunto(s)
Glucógeno Sintasa Quinasa 3 beta/metabolismo , FN-kappa B/metabolismo , Fosforilación , Tonsilitis/diagnóstico , Biomarcadores/metabolismo , Western Blotting , Niño , Preescolar , Enfermedad Crónica , Estudios de Cohortes , Activación Enzimática/genética , Femenino , Glucógeno Sintasa Quinasa 3 beta/genética , Humanos , Masculino , FN-kappa B/genética , Pronóstico , Estudios Prospectivos , ARN Mensajero/genética , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Transducción de Señal , Tonsilitis/genética
14.
Sheng Li Xue Bao ; 70(1): 17-22, 2018 Feb 25.
Artículo en Zh | MEDLINE | ID: mdl-29492510

RESUMEN

The purpose of this study was to explore the effects of different concentrations of calcitonin gene-related peptide (CGRP) on long-term potentiation (LTP) in the hippocampus of mice. C57BL/6J mice (30 days old) were randomly divided into control group, three CGRP groups, and CGRP + CGRP8-37 group (10 mice for each group). Different concentrations of CGRP (50, 100 and 200 nmol/L) were given to the hippocampal slices of mice. The presynaptic release of neurotransmitters and the induction of LTP were measured by extracellular field recording techniques. The result showed that different concentrations of CGRP did not affect the presynaptic release of neurotransmitters, but 100 and 200 nmol/L CGRP increased the amplitude of LTP induced in the hippocampus of mice. This facilitation effect of CGRP was blocked by its specific antagonist CGRP8-37. These results suggest that CGRP dose-dependently facilitates the induction of LTP in the hippocampus of mice through its specific receptor.


Asunto(s)
Péptido Relacionado con Gen de Calcitonina/farmacología , Hipocampo/efectos de los fármacos , Potenciación a Largo Plazo , Fragmentos de Péptidos/farmacología , Animales , Antagonistas del Receptor Peptídico Relacionado con el Gen de la Calcitonina , Ratones , Ratones Endogámicos C57BL , Neurotransmisores/análisis
15.
Sheng Li Xue Bao ; 69(2): 167-171, 2017 Apr 25.
Artículo en Zh | MEDLINE | ID: mdl-28435975

RESUMEN

The aim of the present study was to explore the effects of different doses of calcitonin gene-related peptide (CGRP) injected into the central nucleus of amygdala on cognitive function, learning and memory of mice. C57BL/6J mice (30 days old) were randomly divided into control, sham, and three CGRP groups (10 mice for each group). Three doses of CGRP (200, 400 and 800 ng) were bilaterally administered into the central nucleus of the amygdala. Open field test was used to assess cognitive function. Novel object recognition and Morris water maze test were used to evaluate learning and memory of the mice. The results of open field test showed that 800 ng CGRP significantly increased the locomotive score. The results of novel objective recognition test showed that 400 ng CGRP significantly increased the recognition index. Compared with control group, 400 and 800 ng CGRP groups showed significantly shortened latency period and increased crossing times. Simultaneously, the latency periods of 400 and 800 ng CGRP groups were shorter than that of 200 ng CGRP group. These results suggest that bilateral injection of CGRP into amygdala dose-dependently enhances the learning and memory function of mice.


Asunto(s)
Amígdala del Cerebelo/efectos de los fármacos , Péptido Relacionado con Gen de Calcitonina/farmacología , Aprendizaje , Memoria , Animales , Ratones , Ratones Endogámicos C57BL
16.
Foods ; 13(2)2024 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-38275702

RESUMEN

In this study, Auricularia cornea var. Li. polysaccharides (ACP) were used as the research object to prepare liposome gel and determine its antioxidant activity in vitro. Phosphorylated Auricularia cornea var. Li. polysaccharides (P-ACP) were prepared via the phosphorylation of ACP by the phosphate method. Additionally, phosphorylated Auricularia cornea var. Li. polysaccharide liposomes (P-ACPL) were prepared using a reverse evaporation method. Finally, phosphorylated Auricularia cornea var. Li. polysaccharide liposome gel (P-ACPLG) was prepared by dispersing the P-ACPL in the gel matrix. The results show that the phosphorylation of the P-ACP was 15.51%, the containment rate of the P-ACPL was 84.50%, the average particle size was (192.2 ± 3.3) nm, and the particle size distribution map had a homogeneous peak, resulting in the particle dispersion being uniform and the polydispersion index (PDI) being 0.134 ± 0.021. The average Zeta potential was (-33.4 ± 0.57) mV. In addition, the in vitro antioxidant activity of the P-ACPL was slightly higher than that of the ACP and P-ACP. After the P-ACPL was emulsified into P-ACPLG, the DPPH, hydroxyl radical clearance, and reducing the ability of P-ACPL remained unchanged. In general, the P-ACPLG prepared in this study has good antioxidant activity in vitro and can retain the antioxidant activity of P-ACPL in vitro well.

17.
Environ Sci Pollut Res Int ; 31(10): 15597-15610, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38300497

RESUMEN

Low-molecular-weight aromatic acids (LWMAAs), a ubiquitous organic substance in natural systems, are important in controlling the environmental fate of potentially toxic metals. However, little is known about the effects of LWMAAs on the interactions between biochars and potentially toxic metals. Herein, the influences of three aromatic acids, including benzoic acid (BA), p-hydroxy benzoic acid (PHBA), and syringic acid (SA), on the adsorption of Cd2+ onto biochars generated at three different pyrolysis temperatures under acidic and neutral conditions were examined. Generally, the adsorption ability of biochars for Cd2+ improved with the increase of pyrolysis temperature, which was ascribed to the increased inorganic element contents (e.g., P, S, and Si) and aromaticity, increasing the complexation between mineral anions and metal ions, and the enhanced cation-π interaction. Interestingly, aromatic acids considerably inhibited the adsorption of Cd2+ onto biochars, which was mainly ascribed to multi-mechanisms, including competition of LWMAA molecules and metal ions for adsorption sites, the pore blocking effect, the weakened interaction between mineral anions and Cd2+ induced by the adsorbed aromatic acids, and the formation of water-soluble metal-aromatic acid complexes. Furthermore, the inhibitory effects of LWMAAs on Cd2+ adsorption intensively depended on the aromatic acid type and followed the order of SA > PHBA > BA. This trend was related to the differences in the physicochemical features (e.g., the octanol/water partition coefficient (log Kow) and molecular size) of diverse LMWAAs. The results of this study demonstrate that the effects of coexisting LMWAAs should not be ignored when biochars are applied in soil remediation and wastewater treatment.


Asunto(s)
Cadmio , Carbón Orgánico , Minerales , Cadmio/química , Adsorción , Ácido Benzoico , Agua , Aniones , Iones
18.
ACS Appl Mater Interfaces ; 16(1): 633-642, 2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38150331

RESUMEN

It is highly desirable to fabricate transition bimetallic alloy-embedded porous nanocarbons with a unique nanoarchitecture for the oxygen evolution reaction (OER) and oxygen reduction reaction (ORR) in rechargeable zinc-air batteries. In this work, we introduce a template-assisted in situ alloying synthesis of FeNi alloy nanoparticle-decorated coral-like nanocarbons (FeNi-CNCs) as efficient OER/ORR dual-functional electrocatalysts. The present materials are produced through polycondensation of a covalent triazine framework (CTF), the coordination of Ni and Fe ions, and sequential pyrolytic treatment. Through the pyrolysis process, the nanolamellar FeNi-CTF precursors can be facilely converted into FeNi alloy nanoparticle-decorated nanocarbons. These nanocarbons possess a distinctive three-dimensional (3D) coral-like nanostructure, which is favorable for the transport of oxygen and the diffusion of electrolyte. As a result, FeNi-CNC-800 with the highest efficiency exhibited remarkable electrocatalytic performance and great durability. Additionally, it also can be assembled into rechargeable zinc-air batteries that can be assembled in both liquid and solid forms, offering a superior peak power density, large specific capacity, and outstanding reusability during charging/discharging cycles (e.g., 5160 charging-and-discharging cycles at 10 mA cm-2 for the liquid forms). These traits make it a highly promising option in the burgeoning field of wearable energy conversion.

19.
Adv Mater ; 36(18): e2312868, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38241728

RESUMEN

The intelligent construction of non-noble metal materials that exhibit reversible oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) with bifunctional electrocatalytic performance is greatly coveted in the realm of zinc-air batteries (ZABs). Herein, a crafted structure-amorphous MnO2 lamellae encapsulated covalent triazine polymer-derived N, S, P co-doped carbon sphere (A-MnO2/NSPC) is designed using a self-doped pyrolysis coupled with an in situ encapsulation strategy. The customized A-MnO2/NSPC-2 demonstrates a superior bifunctional electrocatalytic performance, confirmed by a small ΔE index of 0.64 V for ORR/OER. Experimental investigations, along with density functional theory calculations validate that predesigned amorphous MnO2 surface defects and abundant heteroatom catalytic active sites collectively enhance the oxygen electrocatalytic performance. Impressively, the A-MnO2/NSPC-based rechargeable liquid ZABs show a large open-circuit potential of 1.54 V, an ultrahigh peak power density of 181 mW cm-2, an enormous capacity of 816 mAh g-1, and a remarkable stability for more than 1720 discharging/charging cycles. Additionally, the assembled flexible all-solid-state ZABs also demonstrate outstanding cycle stability, surpassing 140 discharging/charging cycles. Therefore, this highly operable synthetic strategy offers substantial understanding in the development of magnificent bifunctional electrocatalysts for various sustainable energy conversions and beyond.

20.
Biomed Pharmacother ; 133: 110975, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33212375

RESUMEN

Diabetes mellitus (type 1 and type 2) and its various complications continue to place a huge burden on global medical resources, despite the availability of numerous drugs that successfully lower blood glucose levels. The major challenging issue in diabetes management is the prevention of various complications that remain the leading cause of diabetes-related mortality. Moreover, the limited long-term durability of monotherapy and undesirable side effects of currently used anti-diabetic drugs underlie the urgent need for novel therapeutic approaches. Phytochemicals represent a rich source of plant-derived molecules that are of pivotal importance to the identification of compounds with therapeutic potential. In this review, we aim to discuss recent advances in the identification of a large array of phytochemicals with immense potential in the management of diabetes and its complications. Given that metabolic inflammation has been established as a key pathophysiological event that drives the progression of diabetes, we focus on the protective effects of representative phytochemicals in metabolic inflammation. This paper also discusses the potential of phytochemicals in the development of new drugs that target the inflammation in the management of diabetes and its complications.


Asunto(s)
Antiinflamatorios/uso terapéutico , Complicaciones de la Diabetes/tratamiento farmacológico , Diabetes Mellitus Tipo 1/tratamiento farmacológico , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Hipoglucemiantes/uso terapéutico , Fitoquímicos/uso terapéutico , Animales , Antiinflamatorios/efectos adversos , Autoinmunidad/efectos de los fármacos , Complicaciones de la Diabetes/etiología , Complicaciones de la Diabetes/metabolismo , Diabetes Mellitus Tipo 1/complicaciones , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/metabolismo , Metabolismo Energético/efectos de los fármacos , Humanos , Hipoglucemiantes/efectos adversos , Mediadores de Inflamación/antagonistas & inhibidores , Mediadores de Inflamación/metabolismo , Fitoquímicos/efectos adversos , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA