Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 161(3): 470-485, 2015 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-25865483

RESUMEN

HIV-1-neutralizing antibodies develop in most HIV-1-infected individuals, although highly effective antibodies are generally observed only after years of chronic infection. Here, we characterize the rate of maturation and extent of diversity for the lineage that produced the broadly neutralizing antibody VRC01 through longitudinal sampling of peripheral B cell transcripts over 15 years and co-crystal structures of lineage members. Next-generation sequencing identified VRC01-lineage transcripts, which encompassed diverse antibodies organized into distinct phylogenetic clades. Prevalent clades maintained characteristic features of antigen recognition, though each evolved binding loops and disulfides that formed distinct recognition surfaces. Over the course of the study period, VRC01-lineage clades showed continuous evolution, with rates of ∼2 substitutions per 100 nucleotides per year, comparable to that of HIV-1 evolution. This high rate of antibody evolution provides a mechanism by which antibody lineages can achieve extraordinary diversity and, over years of chronic infection, develop effective HIV-1 neutralization.


Asunto(s)
Anticuerpos Neutralizantes/genética , Linfocitos B/inmunología , Evolución Molecular , Infecciones por VIH/inmunología , VIH-1/inmunología , Secuencia de Aminoácidos , Anticuerpos Neutralizantes/química , Anticuerpos Neutralizantes/inmunología , Diversidad de Anticuerpos , Enfermedad Crónica , Humanos , Leucocitos Mononucleares , Modelos Moleculares , Datos de Secuencia Molecular , Alineación de Secuencia
2.
Cell ; 161(6): 1280-92, 2015 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-26004070

RESUMEN

The site on the HIV-1 gp120 glycoprotein that binds the CD4 receptor is recognized by broadly reactive antibodies, several of which neutralize over 90% of HIV-1 strains. To understand how antibodies achieve such neutralization, we isolated CD4-binding-site (CD4bs) antibodies and analyzed 16 co-crystal structures -8 determined here- of CD4bs antibodies from 14 donors. The 16 antibodies segregated by recognition mode and developmental ontogeny into two types: CDR H3-dominated and VH-gene-restricted. Both could achieve greater than 80% neutralization breadth, and both could develop in the same donor. Although paratope chemistries differed, all 16 gp120-CD4bs antibody complexes showed geometric similarity, with antibody-neutralization breadth correlating with antibody-angle of approach relative to the most effective antibody of each type. The repertoire for effective recognition of the CD4 supersite thus comprises antibodies with distinct paratopes arrayed about two optimal geometric orientations, one achieved by CDR H3 ontogenies and the other achieved by VH-gene-restricted ontogenies.


Asunto(s)
Anticuerpos Neutralizantes/química , Anticuerpos Antivirales/química , Proteína gp120 de Envoltorio del VIH/química , Proteína gp120 de Envoltorio del VIH/metabolismo , VIH-1/fisiología , Secuencia de Aminoácidos , Anticuerpos Neutralizantes/metabolismo , Anticuerpos Antivirales/metabolismo , Linfocitos B/inmunología , Antígenos CD4/metabolismo , Regiones Determinantes de Complementariedad , Epítopos de Linfocito B , Proteína gp120 de Envoltorio del VIH/inmunología , Humanos , Modelos Moleculares , Datos de Secuencia Molecular , Alineación de Secuencia
3.
Cell ; 158(3): 481-91, 2014 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-25065977

RESUMEN

Development of strategies for induction of HIV-1 broadly neutralizing antibodies (bnAbs) by vaccines is a priority. Determining the steps of bnAb induction in HIV-1-infected individuals who make bnAbs is a key strategy for immunogen design. Here, we study the B cell response in a bnAb-producing individual and report cooperation between two B cell lineages to drive bnAb development. We isolated a virus-neutralizing antibody lineage that targeted an envelope region (loop D) and selected virus escape mutants that resulted in both enhanced bnAb lineage envelope binding and escape mutant neutralization-traits associated with increased B cell antigen drive. Thus, in this individual, two B cell lineages cooperated to induce the development of bnAbs. Design of vaccine immunogens that simultaneously drive both helper and broadly neutralizing B cell lineages may be important for vaccine-induced recapitulation of events that transpire during the maturation of neutralizing antibodies in HIV-1-infected individuals.


Asunto(s)
Vacunas contra el SIDA/química , Vacunas contra el SIDA/inmunología , Anticuerpos Neutralizantes/inmunología , Anticuerpos Anti-VIH/inmunología , VIH-1/fisiología , Secuencia de Aminoácidos , Linfocitos B/inmunología , Evasión Inmune , Modelos Moleculares , Datos de Secuencia Molecular , Mutación , Alineación de Secuencia , Productos del Gen env del Virus de la Inmunodeficiencia Humana/genética , Productos del Gen env del Virus de la Inmunodeficiencia Humana/inmunología
4.
J Virol ; 98(1): e0147823, 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38085509

RESUMEN

Consistent elicitation of serum antibody responses that neutralize diverse clades of HIV-1 remains a primary goal of HIV-1 vaccine research. Prior work has defined key features of soluble HIV-1 Envelope (Env) immunogen cocktails that influence the neutralization breadth and potency of multivalent vaccine-elicited antibody responses including the number of Env strains in the regimen. We designed immunization groups that consisted of different numbers of SOSIP Env strains to be used in a cocktail immunization strategy: the smallest cocktail (group 2) consisted of a set of two Env strains, which were a subset of the three Env strains that made up group 3, which, in turn, were a subset of the six Env strains that made up group 4. Serum neutralizing titers were modestly broader in guinea pigs that were immunized with a cocktail of three Envs compared to cocktails of two and six, suggesting that multivalent Env immunization could provide a benefit but may be detrimental when the cocktail size is too large. We then adapted the LIBRA-seq platform for antibody discovery to be compatible with guinea pigs, and isolated several tier 2 neutralizing monoclonal antibodies. Three antibodies isolated from two separate guinea pigs were similar in their gene usage and CDR3s, establishing evidence for a guinea pig public clonotype elicited through vaccination. Taken together, this work investigated multivalent HIV-1 Env immunization strategies and provides a novel methodology for screening guinea pig B cell receptor antigen specificity at a high-throughput level using LIBRA-seq.IMPORTANCEMultivalent vaccination with soluble Env immunogens is at the forefront of HIV-1 vaccination strategies but little is known about the influence of the number of Env strains included in vaccine cocktails. Our results suggest that adding more strains is sometimes beneficial but may be detrimental when the number of strains is too high. In addition, we adapted the LIBRA-seq platform to be compatible with guinea pig samples and isolated several tier 2 neutralizing monoclonal antibodies, some of which share V and J gene usage and >70% CDR3 identity, thus establishing the existence of public clonotypes in guinea pigs elicited through vaccination.


Asunto(s)
Vacunas contra el SIDA , Formación de Anticuerpos , VIH-1 , Animales , Cobayas , Vacunas contra el SIDA/inmunología , Anticuerpos Monoclonales , Anticuerpos Neutralizantes , Productos del Gen env del Virus de la Inmunodeficiencia Humana/genética , Anticuerpos Anti-VIH , Infecciones por VIH/inmunología , VIH-1/genética
5.
J Infect Dis ; 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38842497

RESUMEN

BACKGROUND: Dengue vascular permeability syndrome is the primary cause of death in severe dengue infections. The protective versus potentially pathogenic role of dengue NS1 antibodies are not well understood. The main goal of this analysis was to characterize the relationship between free NS1 concentration and NS1 antibody titers in primary and secondary dengue infection in order to better understand the presence and duration of NS1 antibody complexes in clinical dengue infections. METHODS: Hospitalized participants with acute dengue infection were recruited from Northern Colombia between 2018 to 2020. Symptom assessment including dengue signs and symptoms, chart review and blood collection was performed. Primary versus secondary Dengue was assessed serologically. NS1 titers and anti-NS1 antibodies were measured daily. RESULTS: Patients with secondary infection have higher antibody titers than those in primary infection, and we find a negative correlation between anti-NS1 antibody titer and NS1 protein. We demonstrate that in a subset of secondary infection, there are indeed NS1 antibody-antigen complexes at the admission day during the febrile phase that are not detectable by the recovery phase. Furthermore, dengue infection status is associated with higher circulating sialidases. DISCUSSION: The negative correlation between antibody and protein suggests that antibodies may play a role in clearing this viral protein.

6.
Ann Allergy Asthma Immunol ; 130(6): 743-751.e3, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36736722

RESUMEN

BACKGROUND: Clinical trials of the mRNA coronavirus disease 2019 (COVID-19) vaccines excluded individuals with primary antibody deficiencies. OBJECTIVE: To evaluate whether antibody and T-cell responses to mRNA COVID-19 vaccination in patients with common variable immunodeficiency (CVID) and specific antibody deficiency (SAD) were comparable to those in healthy controls. METHODS: We measured antibody responses against the spike glycoprotein and the receptor-binding domain (RBD) in addition to severe acute respiratory syndrome coronavirus 2 specific T-cell responses using peripheral blood mononuclear cells 2 to 8 weeks after the subjects completed the primary 2-dose vaccine series. RESULTS: The study comprised 12 patients with CVID, 7 patients with SAD, and 10 controls. Individuals with CVID had lower immunoglobulin (Ig) G and Ig A levels against spike glycoprotein than did both individuals with SAD (P = .27 and P = .01, respectively) and controls (P = .01 and P = .004, respectively). The CVID group developed lower IgG titers against the RBD epitope than did the control group (P = .01). Participants with CVID had lower neutralizing titers than did the control group (P = .002). All participants with SAD developed neutralizing titers. All 3 groups (SAD, CVID, and control) developed antigen-specific CD4+ and CD8+ T-cell responses after vaccination. CONCLUSION: Our results suggest that patients with CVID may have impaired antibody responses to COVID-19 vaccination but intact T-cell responses, whereas patients with SAD would be expected to have both intact antibody and T-cell responses to vaccination.


Asunto(s)
COVID-19 , Inmunodeficiencia Variable Común , Enfermedades de Inmunodeficiencia Primaria , Humanos , COVID-19/prevención & control , Vacunas contra la COVID-19 , Leucocitos Mononucleares , Vacunación , Inmunoglobulina G , Glicoproteínas
7.
J Virol ; 93(6)2019 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-30626677

RESUMEN

Curing HIV infection has been thwarted by the persistent reservoir of latently infected CD4+ T cells, which reinitiate systemic infection after antiretroviral therapy (ART) interruption. To evaluate reservoir depletion strategies, we developed a novel preclinical in vivo model consisting of immunodeficient mice intrasplenically injected with peripheral blood mononuclear cells (PBMC) from long-term ART-suppressed HIV-infected donors. In the absence of ART, these mice developed rebound viremia which, 2 weeks after PBMC injection, was 1,000-fold higher (mean = 9,229,281 HIV copies/ml) in mice injected intrasplenically than in mice injected intraperitoneally (mean = 6,838 HIV copies/ml) or intravenously (mean = 591 HIV copies/ml). One week after intrasplenic PBMC injection, in situ hybridization of the spleen demonstrated extensive disseminated HIV infection, likely initiated from in vivo-reactivated primary latently infected cells. The time to viremia was delayed significantly by treatment with a broadly neutralizing antibody, 10-1074, compared to treatment with 10-1074-FcRnull, suggesting that 10-1074 mobilized Fc-mediated effector mechanisms to deplete the replication-competent reservoir. This was supported by phylogenetic analysis of Env sequences from viral-outgrowth cultures and untreated, 10-1074-treated, or 10-1074-FcRnull-treated mice. The predominant sequence cluster detected in viral-outgrowth cultures and untreated mouse plasma was significantly reduced in the plasma of 10-1074-treated mice, whereas two new clusters emerged that were not detected in viral-outgrowth cultures or plasma from untreated mice. These new clusters lacked mutations associated with 10-1074 resistance. Taken together, these data indicated that 10-1074 treatment depletes the reservoir of latently infected cells harboring replication competent HIV. Furthermore, this mouse model represents a new in vivo approach for the preclinical evaluation of new HIV cure strategies.IMPORTANCE Sustained remission of HIV infection is prevented by a persistent reservoir of latently infected cells capable of reinitiating systemic infection and viremia. To evaluate strategies to reactivate and deplete this reservoir, we developed and characterized a new humanized mouse model consisting of highly immunodeficient mice intrasplenically injected with peripheral blood mononuclear cells from long-term ART-suppressed HIV-infected donors. Reactivation and dissemination of HIV infection was visualized in the mouse spleens in parallel with the onset of viremia. The applicability of this model for evaluating reservoir depletion treatments was demonstrated by establishing, through delayed time to viremia and phylogenetic analysis of plasma virus, that treatment of these humanized mice with a broadly neutralizing antibody, 10-1074, depleted the patient-derived population of latently infected cells. This mouse model represents a new in vivo approach for the preclinical evaluation of new HIV cure strategies.


Asunto(s)
Infecciones por VIH/virología , VIH-1/fisiología , Latencia del Virus/fisiología , Animales , Anticuerpos Neutralizantes/inmunología , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/virología , Modelos Animales de Enfermedad , Infecciones por VIH/inmunología , VIH-1/inmunología , Humanos , Leucocitos Mononucleares/inmunología , Leucocitos Mononucleares/virología , Ratones , Filogenia , Bazo/inmunología , Bazo/virología , Carga Viral/inmunología , Carga Viral/fisiología , Viremia/inmunología , Viremia/virología , Latencia del Virus/inmunología , Replicación Viral/inmunología
8.
J Virol ; 93(18)2019 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-31217249

RESUMEN

Simian-human immunodeficiency viruses (SHIVs) have been utilized to test vaccine efficacy and characterize mechanisms of viral transmission and pathogenesis. However, the majority of SHIVs currently available have significant limitations in that they were developed using sequences from chronically HIV-infected individuals or uncommon HIV subtypes or were optimized for the macaque model by serially passaging the engineered virus in vitro or in vivo Recently, a newly developed SHIV, SHIV.C.CH505.375H.dCT (SHIV.CH505), which incorporates vpu-env (gp140) sequences from a transmitted/founder HIV-1 subtype C strain, was shown to retain attributes of primary HIV-1 strains. However, a comprehensive analysis of the immunopathology that results from infection with this virus, especially in critical tissue compartments like the intestinal mucosa, has not been completed. In this study, we evaluated the viral dynamics and immunopathology of SHIV.CH505 in rhesus macaques. In line with previous findings, we found that SHIV.CH505 is capable of infecting and replicating efficiently in rhesus macaques, resulting in peripheral viral kinetics similar to that seen in pathogenic SIV and HIV infection. Furthermore, we observed significant and persistent depletions of CCR5+ and CCR6+ CD4+ T cells in mucosal tissues, decreases in CD4+ T cells producing Th17 cell-associated cytokines, CD8+ T cell dysfunction, and alterations of B cell and innate immune cell function, indicating that SHIV.CH505 elicits intestinal immunopathology typical of SIV/HIV infection. These findings suggest that SHIV.CH505 recapitulates the early viral replication dynamics and immunopathogenesis of HIV-1 infection of humans and thus can serve as a new model for HIV-1 pathogenesis, treatment, and prevention research.IMPORTANCE The development of chimeric SHIVs has been instrumental in advancing our understanding of HIV-host interactions and allowing for in vivo testing of novel treatments. However, many of the currently available SHIVs have distinct drawbacks and are unable to fully reflect the features characteristic of primary SIV and HIV strains. Here, we utilize rhesus macaques to define the immunopathogenesis of the recently developed SHIV.CH505, which was designed without many of the limitations of previous SHIVs. We observed that infection with SHIV.CH505 leads to peripheral viral kinetics and mucosal immunopathogenesis comparable with those caused by pathogenic SIV and HIV. Overall, these data provide evidence of the value of SHIV.CH505 as an effective model of SIV/HIV infection and an important tool that can be used in future studies, including preclinical testing of new therapies or prevention strategies.


Asunto(s)
Ingeniería Genética/métodos , VIH/inmunología , Virus de la Inmunodeficiencia de los Simios/inmunología , Animales , Modelos Animales de Enfermedad , Infecciones por VIH/virología , VIH-1/inmunología , Humanos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/virología , Macaca mulatta/virología , Modelos Biológicos , Síndrome de Inmunodeficiencia Adquirida del Simio/virología , Carga Viral/inmunología , Replicación Viral/fisiología , Productos del Gen env del Virus de la Inmunodeficiencia Humana/genética , Productos del Gen env del Virus de la Inmunodeficiencia Humana/inmunología
9.
J Infect Dis ; 219(1): 26-30, 2019 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-30113672

RESUMEN

The role of neutralizing antibodies in Zika-induced Guillain-Barré syndrome (GBS) has not yet been investigated. We conducted a case-control study using sera from the 2016 Zika epidemic in Colombia to determine the neutralizing antibody activity against Zika virus (ZIKV) and dengue virus serotype 2 (DENV2). We observed increased neutralizing antibody titers against DENV2 in ZIKV-infected individuals compared with uninfected controls and higher titers to both ZIKV and DENV2 in ZIKV-infected patients diagnosed with GBS compared with non-GBS ZIKV-infected controls. These data suggest that high neutralizing antibody titers to DENV and to ZIKV are associated with GBS during ZIKV infection.


Asunto(s)
Anticuerpos Neutralizantes/sangre , Anticuerpos Antivirales/sangre , Dengue/sangre , Síndrome de Guillain-Barré/sangre , Infección por el Virus Zika/sangre , Adulto , Estudios de Casos y Controles , Colombia/epidemiología , Dengue/complicaciones , Dengue/inmunología , Virus del Dengue/aislamiento & purificación , Femenino , Síndrome de Guillain-Barré/complicaciones , Síndrome de Guillain-Barré/virología , Humanos , Masculino , Persona de Mediana Edad , Virus Zika/aislamiento & purificación , Infección por el Virus Zika/complicaciones , Infección por el Virus Zika/inmunología
10.
N Engl J Med ; 375(21): 2037-2050, 2016 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-27959728

RESUMEN

BACKGROUND: The discovery of potent and broadly neutralizing antibodies (bNAbs) against human immunodeficiency virus (HIV) has made passive immunization a potential strategy for the prevention and treatment of HIV infection. We sought to determine whether passive administration of VRC01, a bNAb targeting the HIV CD4-binding site, can safely prevent or delay plasma viral rebound after the discontinuation of antiretroviral therapy (ART). METHODS: We conducted two open-label trials (AIDS Clinical Trials Group [ACTG] A5340 and National Institutes of Health [NIH] 15-I-0140) of the safety, side-effect profile, pharmacokinetic properties, and antiviral activity of VRC01 in persons with HIV infection who were undergoing interruption of ART. RESULTS: A total of 24 participants were enrolled, and one serious alcohol-related adverse event occurred. Viral rebound occurred despite plasma VRC01 concentrations greater than 50 µg per milliliter. The median time to rebound was 4 weeks in the A5340 trial and 5.6 weeks in the NIH trial. Study participants were more likely than historical controls to have viral suppression at week 4 (38% vs. 13%, P=0.04 by a two-sided Fisher's exact test in the A5340 trial; and 80% vs. 13%, P<0.001 by a two-sided Fisher's exact test in the NIH trial) but the difference was not significant at week 8. Analyses of virus populations before ART as well as before and after ART interruption showed that VRC01 exerted pressure on rebounding virus, resulting in restriction of recrudescent viruses and selection for preexisting and emerging antibody neutralization-resistant virus. CONCLUSIONS: VRC01 slightly delayed plasma viral rebound in the trial participants, as compared with historical controls, but it did not maintain viral suppression by week 8. In the small number of participants enrolled in these trials, no safety concerns were identified with passive immunization with a single bNAb (VRC01). (Funded by the National Institute of Allergy and Infectious Diseases and others; ACTG A5340 and NIH 15-I-0140 ClinicalTrials.gov numbers, NCT02463227 and NCT02471326 .).


Asunto(s)
Anticuerpos Monoclonales/uso terapéutico , Anticuerpos Neutralizantes/uso terapéutico , Infecciones por VIH/tratamiento farmacológico , VIH/aislamiento & purificación , Viremia/prevención & control , Adulto , Anciano , Anticuerpos Monoclonales/efectos adversos , Anticuerpos Monoclonales/farmacocinética , Anticuerpos Neutralizantes/efectos adversos , Anticuerpos ampliamente neutralizantes , Femenino , VIH/genética , Anticuerpos Anti-VIH , Infecciones por VIH/virología , Estudio Históricamente Controlado , Humanos , Masculino , Persona de Mediana Edad , Filogenia , ARN Viral/sangre , Carga Viral
11.
J Virol ; 92(23)2018 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-30209173

RESUMEN

Efforts to cure human immunodeficiency virus (HIV) infection are obstructed by reservoirs of latently infected CD4+ T cells that can reestablish viremia. HIV-specific broadly neutralizing antibodies (bNAbs), defined by unusually wide neutralization breadths against globally diverse viruses, may contribute to the elimination of these reservoirs by binding to reactivated cells, thus targeting them for immune clearance. However, the relationship between neutralization of reservoir isolates and binding to corresponding infected primary CD4+ T cells has not been determined. Thus, the extent to which neutralization breadths and potencies can be used to infer the corresponding parameters of infected cell binding is currently unknown. We assessed the breadths and potencies of bNAbs against 36 viruses reactivated from peripheral blood CD4+ T cells from antiretroviral (ARV)-treated HIV-infected individuals by using paired neutralization and infected cell binding assays. Single-antibody breadths ranged from 0 to 64% for neutralization (80% inhibitory concentration [IC80] of ≤10 µg/ml) and from 0 to 89% for binding, with two-antibody combinations (results for antibody combinations are theoretical/predicted) reaching levels of 0 to 83% and 50 to 100%, respectively. Infected cell binding correlated with virus neutralization for 10 of 14 antibodies (e.g., for 3BNC117, r = 0.82 and P < 0.0001). Heterogeneity was observed, however, with a lack of significant correlation for 2G12, CAP256.VRC26.25, 2F5, and 4E10. Our results provide guidance on the selection of bNAbs for interventional cure studies, both by providing a direct assessment of intra- and interindividual variabilities in neutralization and infected cell binding in a novel cohort and by defining the relationships between these parameters for a panel of bNAbs.IMPORTANCE Although antiretroviral therapies have improved the lives of people who are living with HIV, they do not cure infection. Efforts are being directed towards harnessing the immune system to eliminate the virus that persists, potentially resulting in virus-free remission without medication. HIV-specific antibodies hold promise for such therapies owing to their ability to both prevent the infection of new cells (neutralization) and direct the killing of infected cells. We isolated 36 HIV strains from individuals whose virus was suppressed by medication and tested 14 different antibodies for neutralization of these viruses and for binding to cells infected with the same viruses (critical for engaging natural killer cells). For both neutralization and infected cell binding, we observed variation both between individuals and amongst different viruses within an individual. For most antibodies, neutralization activity correlated with infected cell binding. These data provide guidance on the selection of antibodies for clinical trials.


Asunto(s)
Anticuerpos Monoclonales/inmunología , Anticuerpos Neutralizantes/inmunología , Anticuerpos Anti-VIH/inmunología , Infecciones por VIH/inmunología , Infecciones por VIH/virología , VIH-1/inmunología , Viremia/inmunología , Adulto , Citotoxicidad Celular Dependiente de Anticuerpos , Proteína gp120 de Envoltorio del VIH/inmunología , Humanos , Masculino , Persona de Mediana Edad , Pruebas de Neutralización , Viremia/virología
12.
J Virol ; 90(1): 76-91, 2016 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-26468542

RESUMEN

UNLABELLED: The epitopes defined by HIV-1 broadly neutralizing antibodies (bNAbs) are valuable templates for vaccine design, and studies of the immunological development of these antibodies are providing insights for vaccination strategies. In addition, the most potent and broadly reactive of these bNAbs have potential for clinical use. We previously described a family of 12 V1V2-directed neutralizing antibodies, CAP256-VRC26, isolated from an HIV-1 clade C-infected donor at years 1, 2, and 4 of infection (N. A. Doria-Rose et al., Nature 509:55-62, 2014, http://dx.doi.org/10.1038/nature13036). Here, we report on the isolation and characterization of new members of the family mostly obtained at time points of peak serum neutralization breadth and potency. Thirteen antibodies were isolated from B cell culture, and eight were isolated using trimeric envelope probes for differential single B cell sorting. One of the new antibodies displayed a 10-fold greater neutralization potency than previously published lineage members. This antibody, CAP256-VRC26.25, neutralized 57% of diverse clade viral isolates and 70% of clade C isolates with remarkable potency. Among the viruses neutralized, the median 50% inhibitory concentration was 0.001 µg/ml. All 33 lineage members targeted a quaternary epitope focused on V2. While all known bNAbs targeting the V1V2 region interact with the N160 glycan, the CAP256-VRC26 antibodies showed an inverse correlation of neutralization potency with dependence on this glycan. Overall, our results highlight the ongoing evolution within a single antibody lineage and describe more potent and broadly neutralizing members with potential clinical utility, particularly in areas where clade C is prevalent. IMPORTANCE: Studies of HIV-1 broadly neutralizing antibodies (bNAbs) provide valuable information for vaccine design, and the most potent and broadly reactive of these bNAbs have potential for clinical use. We previously described a family of V1V2-directed neutralizing antibodies from an HIV-1 clade C-infected donor. Here, we report on the isolation and characterization of new members of the family mostly obtained at time points of peak serum neutralization breadth and potency. One of the new antibodies, CAP256-VRC26.25, displayed a 10-fold greater neutralization potency than previously described lineage members. It neutralized 57% of diverse clade viral isolates and 70% of clade C isolates with remarkable potency: the median 50% inhibitory concentration was 0.001 µg/ml. Our results highlight the ongoing evolution within a single antibody lineage and describe more potent and broadly neutralizing members with potential clinical utility, particularly in areas where clade C is prevalent.


Asunto(s)
Anticuerpos Neutralizantes/inmunología , Reacciones Cruzadas , Anticuerpos Anti-VIH/inmunología , Infecciones por VIH/inmunología , Infecciones por VIH/virología , VIH-1/inmunología , Anticuerpos Neutralizantes/genética , Anticuerpos Neutralizantes/aislamiento & purificación , Mapeo Epitopo , Femenino , Anticuerpos Anti-VIH/genética , Anticuerpos Anti-VIH/aislamiento & purificación , Proteína gp120 de Envoltorio del VIH/inmunología , Humanos , Concentración 50 Inhibidora , Datos de Secuencia Molecular , Análisis de Secuencia de ADN
13.
Curr HIV/AIDS Rep ; 14(2): 54-62, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28349376

RESUMEN

PURPOSE OF REVIEW: The purpose of this study is to summarize recent advances in the use of broadly neutralizing antibodies (bNAbs) as therapeutics in human clinical trials and in non-human primate (NHP) models. We seek to highlight lessons from these studies with an emphasis on consequences to the virus and immune system. RECENT FINDINGS: In the past 10 years, advances in HIV-1 trimer structure and B cell isolation methods have precipitated the identification of "new-generation" anti-HIV antibodies with broad and potent neutralization. In the past 2 years, the concept of using these bNAbs as therapeutic tools has moved from NHP models into human clinical trials. These trials have investigated the effects of bNAb infusions into patients chronically infected with HIV-1, while the NHP model has investigated treatment during acute infection. Through this work, the relationship between in vitro breadth and potency and in vivo clinical effect, although unresolved, is gradually being elucidated. These results emphasize the need for combination antibody therapy.


Asunto(s)
Anticuerpos Neutralizantes/inmunología , Anticuerpos Anti-VIH/inmunología , Infecciones por VIH/prevención & control , Infecciones por VIH/terapia , VIH-1/inmunología , Animales , Linfocitos B , Infecciones por VIH/inmunología , Humanos
14.
Curr Opin Infect Dis ; 29(1): 23-30, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26658653

RESUMEN

PURPOSE OF REVIEW: The induction of a virus-clearing humoral immune response in natural HIV infection is impaired. Insights into early events in HIV infection that affect B-cell responses and antibody development are addressed and related to strategies for the design of an HIV vaccine. RECENT FINDINGS: Broadly neutralizing antibody responses do not develop early in HIV-1 infection, and recent reports highlight the role of preexisting suboptimal B-cell populations that can dominate the early antibody response. Furthermore, from the earliest phases of infection, virus replication is a driving force behind alterations in the B cell and T-follicular helper cell (TFH) compartments. Paradoxically, the factors that drive these abnormalities, such as high virus load, duration of infection, and increased viral diversity, are likely necessary for the development of both TFH and broadly neutralizing antibodies. SUMMARY: These data provide new insights into prerequisites for an effective HIV vaccine. First, a vaccine should induce specific B-cell lineages so that preexisting cross-reactivity is avoided and, additionally, it must mimic high levels of diverse antigen in the absence of chronic virus replication within immune cells to activate high levels of quality of TFH and stimulate antibody maturation.


Asunto(s)
Vacunas contra el SIDA/farmacología , Anticuerpos Neutralizantes/inmunología , Formación de Anticuerpos/inmunología , Linfocitos B/inmunología , Infecciones por VIH/inmunología , Formación de Anticuerpos/fisiología , Linfocitos T CD4-Positivos/inmunología , Anticuerpos Anti-VIH/inmunología , Infecciones por VIH/fisiopatología , Humanos , Inmunidad Humoral/inmunología , Linfocitos T Colaboradores-Inductores/inmunología
15.
J Virol ; 89(8): 4201-13, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25631091

RESUMEN

UNLABELLED: Broadly neutralizing antibodies (bNAbs) have been isolated from selected HIV-1-infected individuals and shown to bind to conserved sites on the envelope glycoprotein (Env). However, circulating plasma virus in these donors is usually resistant to autologous isolated bNAbs, indicating that during chronic infection, HIV-1 can escape from even broadly cross-reactive antibodies. Here, we evaluate if such viral escape is associated with an impairment of viral replication. Antibodies of the VRC01 class target the functionally conserved CD4 binding site and share a structural mode of gp120 recognition that includes mimicry of the CD4 receptor. We examined naturally occurring VRC01-sensitive and -resistant viral strains, as well as their mutated sensitive or resistant variants, and tested point mutations in the backbone of the VRC01-sensitive isolate YU2. In several cases, VRC01 resistance was associated with a reduced efficiency of CD4-mediated viral entry and diminished viral replication. Several mutations, alone or in combination, in the loop D or ß23-V5 region of Env conferred a high level of resistance to VRC01 class antibodies, suggesting a preferred escape pathway. We further mapped the VRC01-induced escape pathway in vivo using Envs from donor 45, from whom antibody VRC01 was isolated. Initial escape mutations, including the addition of a key glycan, occurred in loop D and were associated with impaired viral replication; however, compensatory mutations restored full replicative fitness. These data demonstrate that escape from VRC01 class antibodies can diminish viral replicative fitness, but compensatory changes may explain the limited impact of neutralizing antibodies during the course of natural HIV-1 infection. IMPORTANCE: Some antibodies that arise during natural HIV-1 infection bind to conserved regions on the virus envelope glycoprotein and potently neutralize the majority of diverse HIV-1 strains. The VRC01 class of antibodies blocks the conserved CD4 receptor binding site interaction that is necessary for viral entry, raising the possibility that viral escape from antibody neutralization might exert detrimental effects on viral function. Here, we show that escape from VRC01 class antibodies can be associated with impaired viral entry and replication; however, during the course of natural infection, compensatory mutations restore the ability of the virus to replicate normally.


Asunto(s)
Anticuerpos Monoclonales/inmunología , Anticuerpos Neutralizantes/inmunología , Aptitud Genética/inmunología , Anticuerpos Anti-VIH/inmunología , Infecciones por VIH/inmunología , VIH-1/inmunología , Evasión Inmune/inmunología , Secuencia de Aminoácidos , Anticuerpos ampliamente neutralizantes , Antígenos CD4/inmunología , Humanos , Mutagénesis Sitio-Dirigida , Pruebas de Neutralización , Alineación de Secuencia , Análisis de Secuencia de ADN , Proteínas del Envoltorio Viral/genética
16.
Mol Pharmacol ; 88(1): 181-7, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25737495

RESUMEN

G protein-coupled receptors (GPCRs), the largest family of signaling receptors in the human genome, are also the largest class of targets of approved drugs. Are the optimal GPCRs (in terms of efficacy and safety) currently targeted therapeutically? Especially given the large number (∼ 120) of orphan GPCRs (which lack known physiologic agonists), it is likely that previously unrecognized GPCRs, especially orphan receptors, regulate cell function and can be therapeutic targets. Knowledge is limited regarding the diversity and identity of GPCRs that are activated by endogenous ligands and that native cells express. Here, we review approaches to define GPCR expression in tissues and cells and results from studies using these approaches. We identify problems with the available data and suggest future ways to identify and validate the physiologic and therapeutic roles of previously unrecognized GPCRs. We propose that a particularly useful approach to identify functionally important GPCRs with therapeutic potential will be to focus on receptors that show selective increases in expression in diseased cells from patients and experimental animals.


Asunto(s)
Perfilación de la Expresión Génica/métodos , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Animales , Regulación de la Expresión Génica , Humanos , Terapia Molecular Dirigida , Receptores Acoplados a Proteínas G/antagonistas & inhibidores , Distribución Tisular
17.
J Clin Invest ; 134(11)2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38652564

RESUMEN

BACKGROUNDEarly antiretroviral therapy initiation (ARTi) in HIV-1 restricts reservoir size and diversity while preserving immune function, potentially improving opportunities for immunotherapeutic cure strategies. For antibody-based cure approaches, the development of autologous neutralizing antibodies (anAbs) after acute/early ARTi is relevant but is poorly understood.METHODSWe characterized antibody responses in a cohort of 23 participants following ARTi in acute HIV (<60 days after acquisition) and early HIV (60-128 days after acquisition).RESULTSPlasma virus sequences at the time of ARTi revealed evidence of escape from anAbs after early, but not acute, ARTi. HIV-1 envelopes representing the transmitted/founder virus(es) (acute ARTi) or escape variants (early ARTi) were tested for sensitivity to longitudinal plasma IgG. After acute ARTi, no anAb responses developed over months to years of suppressive ART. In 2 of the 3 acute ARTi participants who experienced viremia after ARTi, however, anAbs arose shortly thereafter. After early ARTi, anAbs targeting those early variants developed between 12 and 42 weeks of ART and continued to increase in breadth and potency thereafter.CONCLUSIONResults indicate a threshold of virus replication (~60 days) required to induce anAbs, after which they continue to expand on suppressive ART to better target the range of reservoir variants.TRIAL REGISTRATIONClinicalTrials.gov NCT02656511.FUNDINGNIH grants U01AI169767, R01AI162646, UM1AI164570, UM1AI164560, U19AI096109, K23GM112526, T32AI118684, P30AI045008, P30AI027763, R24AI067039; Gilead Sciences grant INUS2361354; Viiv Healthcare grant A126326.


Asunto(s)
Anticuerpos Neutralizantes , Anticuerpos Anti-VIH , Infecciones por VIH , VIH-1 , Humanos , VIH-1/inmunología , Infecciones por VIH/tratamiento farmacológico , Infecciones por VIH/inmunología , Infecciones por VIH/virología , Anticuerpos Neutralizantes/inmunología , Masculino , Anticuerpos Anti-VIH/inmunología , Femenino , Adulto , Persona de Mediana Edad
18.
J Virol ; 86(14): 7588-95, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22573869

RESUMEN

Broadly neutralizing antibodies to the CD4 binding site (CD4bs) of gp120 are generated by some HIV-1-infected individuals, but little is known about the prevalence and evolution of this antibody response during the course of HIV-1 infection. We analyzed the sera of 113 HIV-1 seroconverters from three cohorts for binding to a panel of gp120 core proteins and their corresponding CD4bs knockout mutants. Among sera collected between 99 and 258 weeks post-HIV-1 infection, 88% contained antibodies to the CD4bs and 47% contained antibodies to resurfaced stabilized core (RSC) probes that react preferentially with broadly neutralizing CD4bs antibodies (BNCD4), such as monoclonal antibodies (MAbs) VRC01 and VRC-CH31. Analysis of longitudinal serum samples from a subset of 18 subjects revealed that CD4bs antibodies to gp120 arose within the first 4 to 16 weeks of infection, while the development of RSC-reactive antibodies was more varied, occurring between 10 and 152 weeks post-HIV-1 infection. Despite the presence of these antibodies, serum neutralization mediated by RSC-reactive antibodies was detected in sera from only a few donors infected for more than 3 years. Thus, CD4bs antibodies that bind a VRC01-like epitope are often induced during HIV-1 infection, but the level and potency required to mediate serum neutralization may take years to develop. An improved understanding of the immunological factors associated with the development and maturation of neutralizing CD4bs antibodies during HIV-1 infection may provide insights into the requirements for eliciting this response by vaccination.


Asunto(s)
Anticuerpos Neutralizantes/inmunología , Sitios de Unión de Anticuerpos , Antígenos CD4/inmunología , Anticuerpos Anti-VIH/inmunología , Proteína gp120 de Envoltorio del VIH/inmunología , Infecciones por VIH/inmunología , VIH-1/inmunología , Anticuerpos Monoclonales/inmunología , Anticuerpos Neutralizantes/biosíntesis , Anticuerpos Neutralizantes/sangre , Antígenos CD4/genética , Femenino , Técnicas de Inactivación de Genes , Anticuerpos Anti-VIH/biosíntesis , Anticuerpos Anti-VIH/sangre , VIH-1/patogenicidad , Humanos , Masculino
19.
Blood ; 118(22): 5803-12, 2011 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-21960586

RESUMEN

HIV infection is characterized by immune system dysregulation, including depletion of CD4+ T cells, immune activation, and abnormal B- and T-cell responses. However, the immunologic mechanisms underlying lymphocytic dysfunctionality and whether it is restricted to immune responses against neo antigens, recall antigens, or both is unclear. Here, we immunized SIV-infected and uninfected rhesus macaques to induce immune responses against neo and recall antigens using a Leishmania major polyprotein (MML) vaccine given with poly-ICLC adjuvant. We found that vaccinated SIVuninfected animals induced high frequencies of polyfunctional MML-specific CD4+ T cells. However, in SIV-infected animals, CD4+ T-cell functionality decreased after both neo (P = .0025) and recall (P = .0080) MML vaccination. Furthermore, after SIV infection, the frequency of MML-specific antibody-secreting classic memory B cells was decreased compared with vaccinated, SIV-uninfected animals. Specifically, antibody-secreting classic memory B cells that produced IgA in response to either neo (P = .0221) or recall (P = .0356) MML vaccinations were decreased. Furthermore, we found that T-follicular helper cells, which are essential for priming B cells, are preferentially infected with SIV. These data indicate that SIV infection results in dysfunctional T-cell responses to neo and recall vaccinations, and direct SIV infection of T-follicular helper cells, both of which probably contribute to deficient B-cell responses and, presumably, susceptibility to certain opportunistic infections.


Asunto(s)
Linfocitos B/fisiología , Leishmania major/inmunología , Vacunas contra la Leishmaniasis/uso terapéutico , Leishmaniasis Cutánea/prevención & control , Síndrome de Inmunodeficiencia Adquirida del Simio/inmunología , Virus de la Inmunodeficiencia de los Simios/fisiología , Linfocitos T/fisiología , Animales , Linfocitos B/efectos de los fármacos , Linfocitos B/inmunología , Linfocitos B/patología , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/patología , Inmunización Secundaria , Vacunas contra la Leishmaniasis/administración & dosificación , Vacunas contra la Leishmaniasis/farmacología , Ganglios Linfáticos/inmunología , Ganglios Linfáticos/patología , Activación de Linfocitos/efectos de los fármacos , Activación de Linfocitos/inmunología , Activación de Linfocitos/fisiología , Macaca mulatta/inmunología , Síndrome de Inmunodeficiencia Adquirida del Simio/patología , Virus de la Inmunodeficiencia de los Simios/inmunología , Linfocitos T/efectos de los fármacos , Linfocitos T/inmunología , Linfocitos T/patología , Vacunación/métodos
20.
Curr Opin HIV AIDS ; 18(4): 171-177, 2023 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-37265260

RESUMEN

PURPOSE OF REVIEW: Treatment with combinations of complementary broadly neutralizing antibodies (bnAbs) has increased the proportion of participants for whom bnAbs can maintain virus suppression upon cessation of antiretroviral therapy (ART). There remains, however, a population of trial participants who experience virus rebound despite high plasma concentrations of bnAbs. Thus, baseline resistance remains a critical barrier to the efficacy of bnAbs for use in the treatment and cure of HIV, and the development of a screening assay to guide bnAb selection is a high priority. RECENT FINDINGS: There are two conceptual approaches to assess the putative rebound-competent HIV-1 reservoir for bnAb sensitivity: to assess neutralization sensitivity of reactivated virus in outgrowth assays and sequence-based approaches that include a selection for intact genomes and assessment of known resistance mutations within the env gene. Currently, the only phenotypic assay for bnAb screening that is clinical laboratory improvement amendments certified (CLIA certified) and available for clinical trial use is Monogram Biosciences' PhenoSense HIV Neutralizing Antibody Assay. SUMMARY: Several new approaches for screening are currently under development and future screening methods must address three issues. First, complete sampling of the reservoir may be impossible, and determination of the relevance of partial sampling is needed. Second, multiple lines of evidence indicate that in vitro neutralization measures are at least one correlate of in vivo bnAb activity that should be included in screening, but more research is needed on how to use in vitro neutralization assays and other measures of antibody functions and measures of other antibody features. Third, the feasibility of screening assays must be a priority. A feasible, predictive bnAb screening assay will remain relevant until a time when bnAb combinations are substantially more broad and potent.


Asunto(s)
Infecciones por VIH , VIH-1 , Humanos , Anticuerpos ampliamente neutralizantes , Infecciones por VIH/diagnóstico , Infecciones por VIH/tratamiento farmacológico , Anticuerpos Anti-VIH , Anticuerpos Neutralizantes , Epítopos , VIH-1/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA