RESUMEN
Efficient error correction in high-speed communication networks, such as the 50G passive optical network (50G-PON), is paramount. This Letter focuses on optimizing a layered non-surjective finite alphabet iterative decoder (LNS-FAID) for 50G-PON, with an emphasis on high-throughput and low-power consumption. We propose using a distinct lookup table (LUT) for each iteration to enhance decoding performance and lower error floors. Additionally, we improve the 2-bit LNS-FAID architecture by adding operational states and a sign backtracking (SBT) strategy. This paper also introduces a hybrid precision model that merges 3-bit and 2-bit LNS-FAIDs, which balances error correction with computational efficiency. Our simulation results show that these approaches significantly improve the performance of the LDPC code in 50G-PON.
RESUMEN
In this study, nCaO2 was synthesized successfully and applied in the Fe(II)-based catalytic environments in investigating trichloroethylene (TCE) removal performance. nCaO2 with the particle sizes in the range of 50-200 nm was prepared, and it performed better for TCE removal when compared to the conventional CaO2. Further experimental results showed that 70.4% of TCE could be removed in 180 min at the nCaO2/Fe(II)/TCE molar ratio of 1/2/1, while this data was elevated to 86.1% in the presence of citric acid (CA) at the nCaO2/Fe(II)/CA/TCE molar ratio of 1/2/2/1 in the same test period. Probe compound tests, specifically designed for free radicals confirmation, demonstrated the presence of HO⢠and O2 -â¢. Moreover, scavenging tests indicated that HO⢠was the major radical responsible for TCE degradation but O2 -⢠promoted the removal of TCE in both nCaO2/Fe(II) and nCaO2/Fe(II)-CA system. In addition, the effects of initial solution pH and anions (Cl-, HCO3 -) were also evaluated. The performance of TCE degradation in actual groundwater demonstrated that both nCaO2/Fe(II) and nCaO2/Fe(II)-CA systems can be applicable for TCE removal in ISCO practice and the nCaO2/Fe(II)-CA system is much promising technique. These fundamental data strongly confirmed the feasibility and potential of nCaO2 based technique in the remediation of TCE contaminated groundwater.
RESUMEN
Autophagy is a promising target for promoting neural regeneration, which is essential for sensorimotor recovery following traumatic brain injury (TBI). Whether neuronal heat shock protein B2 (HSPB2), a small molecular heat shock protein, reduces injury and promotes recovery following TBI remains unclear. In this study, we demonstrated that HSPB2 was significantly increased in the neurons of a TBI mouse model, patients, and primary neuron cultures subjected to oxygen/glucose deprivation and reperfusion treatment. Upon creating a tamoxifen-induced neuron-specific HSPB2 overexpression transgenic mouse model, we found that elevated HSPB2 levels promoted long-term sensorimotor recovery and alleviated tissue loss after TBI. We also demonstrated that HSPB2 enhanced white matter structural and functional integrity, promoted central nervous system (CNS) plasticity, and accelerated long-term neural remodeling. Moreover, we found that autophagy occurred around injured brain tissues in patients, and the pro-regenerative effects of HSPB2 relied on its autophagy-promoting function. Mechanistically, HSPB2 may regulate autophagy possibly by forming the HSPB2/BCL2-associated athanogene 3/sequestosome-1 complex to facilitate the clearance of erroneously accumulated proteins in the axons. Treatment with the autophagy inhibitor chloroquine during the acute stage or delayed induction of HSPB2 remarkably impeded HSPB2's long-term reparative function, indicating the importance of acute-stage autophagy in long-term neuro-regeneration. Our findings highlight the beneficial role of HSPB2 in neuro-regeneration and functional recovery following acute CNS injury, thereby emphasizing the therapeutic potential of autophagy regulation for enhancing neuro-regeneration.
Asunto(s)
Lesiones Traumáticas del Encéfalo , Proteínas de Choque Térmico Pequeñas , Animales , Ratones , Proteínas de Choque Térmico , Autofagia , Modelos Animales de Enfermedad , Ratones Transgénicos , Regeneración NerviosaRESUMEN
The degradation performance of trichloroethylene (TCE) by sodium percarbonate (SPC) activated with citric acid (CA) chelated Fe(II) in the presence of nonionic surfactant Tween-80 was investigated. The addition of CA successfully prevented the precipitation of iron and facilitated TCE degradation. However, Tween-80 had an inhibitory effect on TCE degradation mainly due to the competition of ∗OH between Tween-80 and TCE. The effect of SPC and Fe(II) dosage on TCE degradation was also explored and the results displayed that 87.2% of TCE could be degraded in 15 min at the SPC/Fe(II)/CA/TCE molar ratio of 3/4/2/1. Free radical probe tests confirmed that both O2-∗ and ∗OH were generated in the SPC/Fe(II)/CA system. Free radical scavenging tests implied that the degradation of TCE in the SPC/Fe(II)/CA system was mainly attributed to ∗OH, while O2-∗ was only partially involved in the degradation of TCE. In addition, TCE removal was suppressed with the raising of the initial solution pH from 3.0 to 9.0. The actual groundwater (containing Tween-80) tests confirmed that 93.2% of TCE degradation could be achieved at the SPC/Fe(II)/CA/TCE molar ratio of 30/40/10/1 and strongly demonstrated that the SPC/Fe(II)/CA process has potential for the in situ treatment of TCE contaminated groundwater in the presence of surfactant Tween-80. In conclusion, TCE degradation by Fe(II) activated SPC system in the presence of Tween-80 can be significantly enhanced with the addition of CA, and this finding offers an innovative direction for removing chlorinated organic contaminants from groundwater in contaminated site after surfactant solubilization treatment.
Asunto(s)
Carbonatos/química , Tensoactivos/química , Tricloroetileno/química , Contaminantes Químicos del Agua/química , Quelantes , Ácido Cítrico , Compuestos Ferrosos/química , Agua Subterránea , Hierro , Oxidación-Reducción , Polisorbatos , Surfactantes Pulmonares , Contaminantes Químicos del Agua/análisisRESUMEN
The performance of trichloroethene (TCE) removal was initially investigated in sodium persulfate (SPS) or potassium monopersulfate triple salt (PMS) oxidative environment by reduced graphene oxide (rGO) supported nZVI (nZVI-rGO) catalyst and further the role of sulphur by anchoring nano FeS on nZVI-rGO (FeS@nZVI-rGO) was evaluated. The high usage of oxidants and stability of FeS@nZVI-rGO catalyst were significantly improved due to the insoluble nature of this innovative catalyst by involvement of nano FeS which limited the rapid iron loss caused by the corrosion of active sites and mitigated rapid oxidants decomposition in FeS@nZVI-rGO/SPS and FeS@nZVI-rGO/PMS systems. The tests for target contaminant removal showed that over 95 % TCE could be removed at 100 mg L-1 FeS@nZVI-rGO and 1.2 mM SPS or 0.3 mM PMS dosages, in which over 85 % TCE could be dechlorinated. The reactive oxygen radicals (ROSs) generation mechanisms and their contribution to TCE removal were investigated through radical scavenge tests in both systems, indicating that both HO and SO4- were the major ROSs rather than O2-. In conclusion, this study revealed the well function and fundamental mechanism of this innovative catalyst by anchoring nano FeS and worth of further demonstration of this technique in TCE contaminated groundwater remediation application.