Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
J Liposome Res ; : 1-13, 2024 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-38343137

RESUMEN

Liposomes have gained prominence as nanocarriers in drug delivery, and the number of products in the market is increasing steadily, particularly in cancer therapeutics. Remote loading of drugs in liposomes is a significant step in the translation and commercialization of the first liposomal product. Low drug loading and drug leakage from liposomes is a translational hurdle that was effectively circumvented by the remote loading process. Remote loading or active loading could load nearly 100% of the drug, which was not possible with the passive loading procedure. A major drawback of conventional remote loading is that only a very small percentage of the drugs are amenable to this method. Therefore, methods for drug loading are still a problem for several drugs. The loading of multiple drugs in liposomes to improve the efficacy and safety of nanomedicine has gained prominence recently with the introduction of a marketed formulation (Vyxeos) that improves overall survival in acute myeloid leukemia. Different strategies for modifying the remote loading process to overcome the drawbacks of the conventional method are discussed here. The review aims to discuss the latest developments in remote loading technology and its implications in liposomal drug delivery.

2.
Recent Pat Anticancer Drug Discov ; 18(3): 268-291, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-35616675

RESUMEN

Green nanotechnology can offer notable advantages over the conventional drug delivery methods in terms of improved drug stability, drug-carrying capacity, site-specificity, and feasibility to apply different routes of administration with less systemic toxicities. Metal nanoparticles bio fabricated with phytoconstituents and microbial extracts have gained significant interest for the treatment of various solid tumors including hepatocellular carcinoma. Hepatocellular carcinoma (HCC) is an aggressive cancer with a very poor prognosis. The current treatments of HCC fails to provide tumor specificity, causing many systemic toxicities and poor overall survival benefits especially for patients in advanced and terminal stages. A novel therapeutic approach with maximal therapeutic effect and minimum adverse effects are urgently required for HCC patients. Green synthesized metal nanoparticles offer significant anticancer effects along with minimal systemic toxicities because of their site-specific delivery into the tumor microenvironment (TME). Green synthesized metal nanoparticles can therefore be a highly beneficial strategy for the treatment of HCC if properly validated with preclinical and clinical studies. This review focuses on the preclinical evidence of the most widely studied green metal nanoparticles such as green synthesized silver nanoparticles, gold nanoparticles and selenium nanoparticles. We have also summarised the clinical studies and the patents approved for nanoparticles against HCC.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Nanopartículas del Metal , Humanos , Carcinoma Hepatocelular/tratamiento farmacológico , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/patología , Oro/uso terapéutico , Relevancia Clínica , Plata/uso terapéutico , Patentes como Asunto , Microambiente Tumoral
3.
Nanoscale Adv ; 4(3): 634-653, 2022 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36131837

RESUMEN

The field of cancer nanomedicine has been fueled by the expectation of mitigating the inefficiencies and life-threatening side effects of conventional chemotherapy. Nanomedicine proposes to utilize the unique nanoscale properties of nanoparticles to address the most pressing questions in cancer treatment and diagnosis. The approval of nano-based products in the 1990s inspired scientific explorations in this direction. However, despite significant progress in the understanding of nanoscale properties, there are only very few success stories in terms of substantial increase in clinical efficacy and overall patient survival. All existing paradigms such as the concept of enhanced permeability and retention (EPR), the stealth effect and immunocompatibility of nanomedicine have been questioned in recent times. In this review we critically examine impediments posed by biological factors to the clinical success of nanomedicine. We put forth current observations on critical outstanding questions in nanomedicine. We also provide the promising side of cancer nanomedicine as we move forward in nanomedicine research. This would provide a future direction for research in nanomedicine and inspire ongoing investigations.

4.
Comb Chem High Throughput Screen ; 25(5): 763-767, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34353250

RESUMEN

SARS-CoV-2, the novel coronavirus and the causative organism of the Covid-19 pandemic wreaked havoc worldwide producing asymptomatic to symptomatic cases leading to significant morbidity and mortality even after infection. Most of the countries reported a mortality rate of 2-3 % majorly due to cardiorespiratory failures. Recent studies highlighted the neurological involvement playing a key role in cardiorespiratory failures and other symptoms such as headache, anosmia, and ageusia observed in Covid-19 patients. Studies suggest SARS-CoV-2 entry via Olfactory Epithelium (OE), and the expression of type 2 transmembrane serine protease (TMPRSS2) in addition to Angiotensin-Converting Enzyme 2 (ACE2) can facilitate SARS-CoV-2 neurotropism. The virus can either travel via peripheral blood vessel causing endothelial dysfunction, triggering coagulation cascade and multiple organ dysfunction or reach the systemic circulation and take a different route to the Blood-Brain Barrier (BBB), disrupting the BBB causing neuroinflammation or neuronal excitotoxicity resulting in the development of encephalitis, encephalopathy, seizures, and strokes. SARS-CoV-2 invasion on the brain stem is believed to be responsible for the cardiorespiratory failures observed in Covid-19 patients. Apart from viral invasion via hematogenous route, SARS-CoV-2 neural invasion via PNS nerve terminal, results in viral replication and retrograde transportation to soma leading to invasion of the CNS including the brain producing neurological manifestations of the disease either in the initial stages or during the course of the disease and even for a long period post-infection in many cases. The ACE2 receptors are expressed in the brain and glial cells and SARS-CoV-2 acts via neuronal as well as nonneuronal pathways. But the exact cell types involved and how they can trigger inflammatory pathways need further in-depth study for the development of targeted therapy.


Asunto(s)
COVID-19 , Neurología , Accidente Cerebrovascular , Humanos , Pandemias , SARS-CoV-2
5.
Adv Pharm Bull ; 10(3): 472-476, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32665908

RESUMEN

Purpose: Sorafenib is the sole FDA approved drug conventionally used for the treatment of advanced hepatocellular carcinoma (HCC). Despite of the beneficial use of sorafenib in the treatment of HCC, multidrug resistance still remains a challenge. HCC is inherently known as chemotherapy resistant tumor due to P-glycoprotein (P-gp)-mediated multidrug resistance. Methods: We studied the interaction energy of kaempferol with human multidrug resistance protein-1 (RCSB PDB ID: 2CBZ) using in silico method with the help of BIOVIA Discovery Studio. HepG2 and N1S1 liver cancer cell lines were treated in suitable cell culture media to evaluate the efficacy of kaempferol in chemo-sensitizing liver cancer cells towards the effect of sorafenib. Cell viability study was performed by MTT assay. Results: In silico analysis of kaempferol showed best docking score of 23.14 with Human Multi Drug Resistant Protein-1 (RCSB PDB ID: 2CBZ) compared with positive control verapamil. Inin-vitro condition, combination of sub-toxic concentrations of both kaempferol and sorafenib produced 50% cytotoxicity with concentration of 2.5 µM each which indicates that kaempferol has the ability to reverse the MDR by decreasing the over-expression of P-gp. Conclusion: Kaempferol is able to sensitize the HepG2 and N1S1 against the sub-toxic concentration of sorafenib. Hence, we consider that the efficacy of sorafenib chemotherapy can be enhanced by the significant approach of combining the sub-toxic concentrations of sorafenib with kaempferol. Thus, kaempferol can be used as a better candidate molecule along with sorafenib for enhancing its efficacy, if validated through preclinical studies.

6.
Int J Biol Macromol ; 110: 318-327, 2018 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-29378277

RESUMEN

Colorectal cancer, also known as bowel cancer, is the uncontrolled cell growth in the colon or rectum (parts of the large intestine), or in the appendix. The colon specific drug delivery would alleviate the systemic side effects and would assure the safe therapy for colonic disorders with minimum dose and duration of therapy. The liquisolid technique refers to solubilisation of drug in a non-volatile solvent combined with inclusion of appropriate carrier and coating agent required for tableting. Colon specific degradation of natural polymer, guar gum and pH dependant degradative (pH-7) property of eudragit L100 restricts the delivery of curcumin in gastric and intestinal pH. Formulated curcumin liquisolid powder was evaluated for the micrometric properties, solubility and by differential thermal analysis, X ray powder diffraction and scanning electron microscopy. Curcumin loaded liquisolid tablet showed more anticancer activity against HCT-15 compared with free curcumin. Bioavailability study of the coated and uncoated liquisolid tablets were performed using Newzealand white rabbits. The present study concludes that liquisolid technique is a promising alternative for improving oral bioavailability and dissolution rate of water insoluble drug and coating liquisolid tablet with colon sensitive polymers showed site specific release of drug in the colon.


Asunto(s)
Antineoplásicos , Colon , Neoplasias Colorrectales , Curcumina , Ácidos Polimetacrílicos , Animales , Antineoplásicos/química , Antineoplásicos/farmacocinética , Antineoplásicos/farmacología , Línea Celular Tumoral , Colon/metabolismo , Colon/patología , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/patología , Curcumina/química , Curcumina/farmacocinética , Curcumina/farmacología , Humanos , Ácidos Polimetacrílicos/química , Ácidos Polimetacrílicos/farmacocinética , Ácidos Polimetacrílicos/farmacología , Conejos , Comprimidos Recubiertos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA