Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
ArXiv ; 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38344223

RESUMEN

Although defocus can be used to generate partial phase contrast in transmission electron microscope images, cryo-electron microscopy (cryo-EM) can be further improved by the development of phase plates which increase contrast by applying a phase shift to the unscattered part of the electron beam. Many approaches have been investigated, including the ponderomotive interaction between light and electrons. We review the recent successes achieved with this method in high-resolution, single-particle cryo-EM. We also review the status of using pulsed or near-field enhanced laser light as alternatives, along with approaches that use scanning transmission electron microscopy (STEM) with a segmented detector rather than a phase plate.

2.
bioRxiv ; 2023 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-36824829

RESUMEN

We identify thermal magnetic field fluctuations, caused by thermal electron motion ("Johnson noise") in electrically conductive materials, as a potential resolution limit in transmission electron microscopy with a phase plate. Specifically, resolution loss can occur if the electron diffraction pattern is magnified to extend phase contrast to lower spatial frequencies, and if conductive materials are placed too close to the electron beam. While our initial implementation of a laser phase plate (LPP) was significantly affected by these factors, a redesign eliminated the problem and brought the performance close to the expected level. The resolution now appears to be limited by residual Johnson noise arising from the electron beam liner tube in the region of the LPP, together with the chromatic aberration of the relay optics. These two factors can be addressed during future development of the LPP.

3.
Ultramicroscopy ; 249: 113730, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37011498

RESUMEN

We identify thermal magnetic field fluctuations, caused by thermal electron motion ("Johnson noise") in electrically conductive materials, as a potential resolution limit in transmission electron microscopy with a phase plate. Specifically, resolution loss can occur if the electron diffraction pattern is magnified to extend phase contrast to lower spatial frequencies, and if conductive materials are placed too close to the electron beam. While our initial implementation of a laser phase plate (LPP) was significantly affected by these factors, a redesign eliminated the problem and brought the performance close to the expected level. The resolution now appears to be limited by residual Johnson noise arising from the electron beam liner tube in the region of the LPP, together with the chromatic aberration of the relay optics. These two factors can be addressed during future development of the LPP.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA