Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
PLoS Genet ; 18(2): e1009963, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35143477

RESUMEN

Insecticide resistance in Anopheles mosquitoes is seriously threatening the success of insecticide-based malaria vector control. Surveillance of insecticide resistance in mosquito populations and identifying the underlying mechanisms enables optimisation of vector control strategies. Here, we investigated the molecular mechanisms of insecticide resistance in three Anopheles coluzzii field populations from southern Côte d'Ivoire, including Agboville, Dabou and Tiassalé. All three populations were resistant to bendiocarb, deltamethrin and DDT, but not or only very weakly resistant to malathion. The absence of malathion resistance is an unexpected result because we found the acetylcholinesterase mutation Ace1-G280S at high frequencies, which would typically confer cross-resistance to carbamates and organophosphates, including malathion. Notably, Tiassalé was the most susceptible population to malathion while being the most resistant one to the pyrethroid deltamethrin. The resistance ratio to deltamethrin between Tiassalé and the laboratory reference colony was 1,800 fold. By sequencing the transcriptome of individual mosquitoes, we found numerous cytochrome P450-dependent monooxygenases - including CYP6M2, CYP6P2, CYP6P3, CYP6P4 and CYP6P5 - overexpressed in all three field populations. This could be an indication for negative cross-resistance caused by overexpression of pyrethroid-detoxifying cytochrome P450s that may activate pro-insecticides, thereby increasing malathion susceptibility. In addition to the P450s, we found several overexpressed carboxylesterases, glutathione S-transferases and other candidates putatively involved in insecticide resistance.


Asunto(s)
Anopheles/genética , Resistencia a los Insecticidas/genética , Malatión/farmacología , Acetilcolinesterasa/genética , Animales , Anopheles/efectos de los fármacos , Côte d'Ivoire/epidemiología , Sistema Enzimático del Citocromo P-450/genética , Sistema Enzimático del Citocromo P-450/metabolismo , Expresión Génica/genética , Insecticidas/farmacología , Malaria/prevención & control , Malaria/transmisión , Malatión/metabolismo , Oxigenasas de Función Mixta/genética , Control de Mosquitos , Mosquitos Vectores/genética , Mutación Puntual , Transcriptoma/genética
2.
Malar J ; 23(1): 252, 2024 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-39175014

RESUMEN

BACKGROUND: Indoor residual spraying (IRS) is one of the most effective malaria control tools. However, its application has become limited to specific contexts due to the increased costs of IRS products and implementation programmes. Selective spraying-selective spray targeted to particular areas/surfaces of dwellings-has been proposed to maintain the malaria control and resistance-management benefits of IRS while decreasing the costs of the intervention. METHODS: A literature search was conducted to find (1) studies that assessed the resting behaviour of Anopheles mosquitoes and (2) studies that evaluated the impact of selective spraying on entomological and malaria outcomes. Additional articles were identified through hand searches of all references cited in articles identified through the initial search. A cost model was developed from PMI VectorLink IRS country programmes, and comparative cost analysis reports to describe the overall cost benefits of selective IRS. RESULTS: In some studies, there appeared to be a clear resting preference for certain Anopheles species in terms of the height at which they rested. However, for other species, and particularly the major African malaria vectors, a clear resting pattern was not detected. Furthermore, resting behaviour was not measured in a standardized way. For the selective spray studies that were assessed, there was a wide range of spray configurations, which complicates the comparison of methods. Many of these spray techniques were effective and resulted in reported 25-68% cost savings and reduced use of insecticide. The reported cost savings in the literature do not always consider all of the IRS implementation costs. Using the IRS cost model, these savings ranged from 17 to 29% for programs that targeted Anopheles spp. and 18-41% for programmes that targeted Aedes aegypti. CONCLUSIONS: Resting behaviour is generally measured in a simplistic way; noting the resting spot of mosquitoes in the morning. This is likely an oversimplification, and there is a need for better monitoring of resting mosquitoes. This may improve the target surface for selective spray techniques, which could reduce the cost of IRS while maintaining its effectiveness. Reporting of cost savings should be calculated considering the entire implementation costs, and a cost model was provided for future calculations.


Asunto(s)
Anopheles , Insecticidas , Malaria , Control de Mosquitos , Control de Mosquitos/métodos , Control de Mosquitos/economía , Animales , Malaria/prevención & control , Anopheles/efectos de los fármacos , Anopheles/fisiología , Insecticidas/administración & dosificación , Insecticidas/economía , Humanos , Mosquitos Vectores/efectos de los fármacos
3.
PLoS Pathog ; 17(3): e1009382, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33730100

RESUMEN

Mosquitoes are vectors of major diseases such as dengue fever and malaria. Mass drug administration of endectocides to humans and livestock is a promising complementary approach to current insecticide-based vector control measures. The aim of this study was to establish an insect model for pharmacokinetic and drug-drug interaction studies to develop sustainable endectocides for vector control. Female Aedes aegypti mosquitoes were fed with human blood containing either ivermectin alone or ivermectin in combination with ketoconazole, rifampicin, ritonavir, or piperonyl butoxide. Drug concentrations were quantified by LC-MS/MS at selected time points post-feeding. Primary pharmacokinetic parameters and extent of drug-drug interactions were calculated by pharmacometric modelling. Lastly, the drug effect of the treatments was examined. The mosquitoes could be dosed with a high precision (%CV: ≤13.4%) over a range of 0.01-1 µg/ml ivermectin without showing saturation (R2: 0.99). The kinetics of ivermectin were characterised by an initial lag phase of 18.5 h (CI90%: 17.0-19.8 h) followed by a slow zero-order elimination rate of 5.5 pg/h (CI90%: 5.1-5.9 pg/h). By contrast, ketoconazole, ritonavir, and piperonyl butoxide were immediately excreted following first order elimination, whereas rifampicin accumulated over days in the mosquitoes. Ritonavir increased the lag phase of ivermectin by 11.4 h (CI90%: 8.7-14.2 h) resulting in an increased exposure (+29%) and an enhanced mosquitocidal effect. In summary, this study shows that the pharmacokinetics of drugs can be investigated and modulated in an Ae. aegypti animal model. This may help in the development of novel vector-control interventions and further our understanding of toxicology in arthropods.


Asunto(s)
Aedes/efectos de los fármacos , Insecticidas/farmacocinética , Ivermectina/farmacocinética , Animales , Inhibidores del Citocromo P-450 CYP3A/farmacocinética , Interacciones Farmacológicas/fisiología , Humanos , Modelos Animales , Control de Mosquitos/métodos , Mosquitos Vectores/efectos de los fármacos , Ritonavir/farmacocinética
4.
Malar J ; 22(1): 194, 2023 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-37355605

RESUMEN

BACKGROUND: Ivermectin (22,23-dihydroavermectin B1a: H2B1a) is an endectocide used to treat worm infections and ectoparasites including lice and scabies mites. Furthermore, survival of malaria transmitting Anopheles mosquitoes is strongly decreased after feeding on humans recently treated with ivermectin. Currently, mass drug administration of ivermectin is under investigation as a potential novel malaria vector control tool to reduce Plasmodium transmission by mosquitoes. A "post-ivermectin effect" has also been reported, in which the survival of mosquitoes remains reduced even after ivermectin is no longer detectable in blood meals. In the present study, existing material from human clinical trials was analysed to understand the pharmacokinetics of ivermectin metabolites and feeding experiments were performed in Anopheles stephensi mosquitoes to assess whether ivermectin metabolites contribute to the mosquitocidal action of ivermectin and whether they may be responsible for the post-ivermectin effect. METHODS: Ivermectin was incubated in the presence of recombinant human cytochrome P450 3A4/5 (CYP 3A4/5) to produce ivermectin metabolites. In total, nine metabolites were purified by semi-preparative high-pressure liquid chromatography. The pharmacokinetics of the metabolites were assessed over three days in twelve healthy volunteers who received a single oral dose of 12 mg ivermectin. Blank whole blood was spiked with the isolated metabolites at levels matching the maximal blood concentration (Cmax) observed in pharmacokinetics study samples. These samples were fed to An. stephensi mosquitoes, and their survival and vitality was recorded daily over 3 days. RESULTS: Human CYP3A4 metabolised ivermectin more rapidly than CYP3A5. Ivermectin metabolites M1-M8 were predominantly formed by CYP3A4, whereas metabolite M9 (hydroxy-H2B1a) was mainly produced by CYP3A5. Both desmethyl-H2B1a (M1) and hydroxy-H2B1a (M2) killed all mosquitoes within three days post-feeding, while administration of desmethyl, hydroxy-H2B1a (M4) reduced survival to 35% over an observation period of 3 days. Ivermectin metabolites that underwent deglycosylation or hydroxylation at spiroketal moiety were not active against An. stephensi at Cmax levels. Interestingly, half-lives of M1 (54.2 ± 4.7 h) and M4 (57.5 ± 13.2 h) were considerably longer than that of the parent compound ivermectin (38.9 ± 20.8 h). CONCLUSION: In conclusion, the ivermectin metabolites M1 and M2 contribute to the activity of ivermectin against An. stephensi mosquitoes and could be responsible for the "post-ivermectin effect".


Asunto(s)
Anopheles , Insecticidas , Malaria , Animales , Humanos , Ivermectina/farmacología , Citocromo P-450 CYP3A , Insecticidas/farmacología , Malaria/prevención & control , Mosquitos Vectores
5.
Malar J ; 22(1): 93, 2023 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-36915098

RESUMEN

BACKGROUND: Knowing the species composition and insecticide resistance status of the target vector population is important to guide malaria vector control. The aim of this study was to characterize the malaria vector population in terms of species composition, insecticide susceptibility status and potential underlying resistance mechanisms in Ellibou, southern Côte d'Ivoire. METHODS: A 1-year longitudinal entomological survey was conducted using light traps and pyrethroid spray catches to sample adult mosquitoes in combination with larval sampling. The susceptibility status of Anopheles gambiae sensu lato (s.l.) to bendiocarb, deltamethrin, DDT and malathion was assessed using the World Health Organization insecticide susceptibility test. Additionally, An. gambiae specimens were screened for knockdown (kdr) and acetylcholineesterase (ace1) target site resistance alleles, and the expression levels of eight metabolic resistance genes, including seven cytochrome P450 monooxygenases (P450s) and one glutathione S-transferase (GST), measured with reverse transcription quantitative real-time polymerase chain reaction (qPCR). RESULTS: Overall, 2383 adult mosquitoes from 12 different taxa were collected with Culex quinquefasciatus and An. gambiae being the predominant taxa. Molecular identification of An. gambiae s.l. revealed the presence of Anopheles arabiensis, Anopheles coluzzii, An. gambiae sensu stricto (s.s.) and Anopheles coluzzii/An. gambiae s.s. hybrids. Anopheles gambiae mosquitoes were resistant to all insecticides except malathion. PCR diagnostics revealed the presence of ace1-G280S and the kdr L995F, L995S and N1570Y target-site mutations. Additionally, several genes were upregulated, including five P450s (i.e., CYP6P3, CYP6M2, CYP9K1, CYP6Z1, CYP6P1) and GSTE2. CONCLUSION: This is the first documented presence of An. arabiensis in Côte d'Ivoire. Its detection - together with a recent finding further north of the country - confirms its existence in the country, which is an early warning sign, as An. arabiensis shows a different biology than the currently documented malaria vectors. Because the local An. gambiae population was still susceptible to malathion, upregulation of P450s, conferring insecticide resistance to pyrethroids, together with the presence of ace1, suggest negative cross-resistance. Therefore, organophosphates could be an alternative insecticide class for indoor residual spraying in the Ellibou area, while additional tools against the outdoor biting An. arabiensis will have to be considered.


Asunto(s)
Anopheles , Insecticidas , Malaria , Piretrinas , Animales , Insecticidas/farmacología , Resistencia a los Insecticidas/genética , Anopheles/genética , Malatión/farmacología , Côte d'Ivoire , Mosquitos Vectores/genética , Malaria/epidemiología
6.
Chimia (Aarau) ; 77(9): 582-592, 2023 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-38047834

RESUMEN

In pursuing novel therapeutic solutions, drug discovery and development rely on efficiently utilising existing knowledge and resources. Repurposing know-how, a strategy that capitalises on previously acquired information and expertise, has emerged as a powerful approach to accelerate drug discovery and development processes, often at a fraction of the costs of de novo developments. For 80 years, collaborating within a network of partnerships, the Swiss Tropical and Public Health Institute (Swiss TPH) has been working along a value chain from innovation to validation and application to combat poverty-related diseases. This article presents an overview of selected know-how repurposing initiatives conducted at Swiss TPH with a particular emphasis on the exploration of drug development pathways in the context of neglected tropical diseases and other infectious diseases of poverty, such as schistosomiasis, malaria and human African trypanosomiasis.


Asunto(s)
Reposicionamiento de Medicamentos , Salud Pública , Humanos , Desarrollo de Medicamentos , Descubrimiento de Drogas , Suiza
7.
PLoS Comput Biol ; 17(10): e1009460, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34710086

RESUMEN

Fifth generation networks (5G) will be associated with a partial shift to higher carrier frequencies, including wavelengths comparable in size to insects. This may lead to higher absorption of radio frequency (RF) electromagnetic fields (EMF) by insects and could cause dielectric heating. The yellow fever mosquito (Aedes aegypti), a vector for diseases such as yellow and dengue fever, favors warm climates. Being exposed to higher frequency RF EMFs causing possible dielectric heating, could have an influence on behavior, physiology and morphology, and could be a possible factor for introduction of the species in regions where the yellow fever mosquito normally does not appear. In this study, the influence of far field RF exposure on A. aegypti was examined between 2 and 240 GHz. Using Finite Difference Time Domain (FDTD) simulations, the distribution of the electric field in and around the insect and the absorbed RF power were found for six different mosquito models (three male, three female). The 3D models were created from micro-CT scans of real mosquitoes. The dielectric properties used in the simulation were measured from a mixture of homogenized A. aegypti. For a given incident RF power, the absorption increases with increasing frequency between 2 and 90 GHz with a maximum between 90 and 240 GHz. The absorption was maximal in the region where the wavelength matches the size of the mosquito. For a same incident field strength, the power absorption by the mosquito is 16 times higher at 60 GHz than at 6 GHz. The higher absorption of RF power by future technologies can result in dielectric heating and potentially influence the biology of this mosquito.


Asunto(s)
Aedes , Mosquitos Vectores , Ondas de Radio , Aedes/fisiología , Aedes/efectos de la radiación , Animales , Femenino , Calor , Masculino , Mosquitos Vectores/fisiología , Mosquitos Vectores/efectos de la radiación , Fiebre Amarilla/transmisión
8.
Molecules ; 26(18)2021 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-34577014

RESUMEN

Previous studies have indicated widespread insecticide resistance in malaria vector populations from Cameroon. However, the intensity of this resistance and underlying mechanisms are poorly known. Therefore, we conducted three cross-sectional resistance surveys between April 2018 and October 2019, using the revised World Health Organization protocol, which includes resistance incidences and intensity assessments. Field-collected Anopheles gambiae s.l. populations from Nkolondom, Nkolbisson and Ekié vegetable farms in the city of Yaoundé were tested with deltamethrin, permethrin, alpha-cypermethrin and etofenprox, using 1× insecticide diagnostic concentrations for resistance incidence, then 5× and 10× concentrations for resistance intensity. Subsamples were analyzed for species identification and the detection of resistance-associated molecular markers using TaqMan® qPCR assays. In Nkolbisson, both An. coluzzii (96%) and An. gambiae s.s. (4%) were found together, whereas only An. gambiae s.s. was present in Nkolondom, and only An. coluzzii was present in Ekié. All three populations were resistant to the four insecticides (<75% mortality rates-MR1×), with intensity generally fluctuating over the time between mod-erate (<98%-MR5×; ≥98%-MR10×) and high (76-97%-MR10×). The kdr L995F, L995S, and N1570Y, and the Ace-1 G280S-resistant alleles were found in An. gambiae from Nkolondom, at 73%, 1%, 16% and 13% frequencies, respectively, whereas only the kdr L995F was found in An. gambiae s.s. from Nkolbisson at a 50% frequency. In An. coluzzii from Nkolbisson and Ekié, we detected only the kdr L995F allele at 65% and 60% frequencies, respectively. Furthermore, expression levels of Cyp6m2, Cyp9k1, and Gste2 metabolic genes were highly upregulated (over fivefold) in Nkolondom and Nkolbisson. Pyrethroid and etofenprox-based vector control interventions may be jeopardized in the prospected areas, due to high resistance intensity, with multiple mechanisms in An. gambiae s.s. and An. coluzzii.


Asunto(s)
Anopheles , Piretrinas , Animales , Camerún/epidemiología , Estudios Transversales , Granjas , Resistencia a los Insecticidas/efectos de los fármacos , Malaria , Mosquitos Vectores , Verduras
9.
Appl Environ Microbiol ; 85(21)2019 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-31444206

RESUMEN

Fungi produce various defense proteins against antagonists, including ribotoxins. These toxins cleave a single phosphodiester bond within the universally conserved sarcin-ricin loop of ribosomes and inhibit protein biosynthesis. Here, we report on the structure and function of ageritin, a previously reported ribotoxin from the edible mushroom Agrocybe aegerita The amino acid sequence of ageritin was derived from cDNA isolated from the dikaryon A. aegerita AAE-3 and lacks, according to in silico prediction, a signal peptide for classical secretion, predicting a cytoplasmic localization of the protein. The calculated molecular weight of the protein is slightly higher than the one reported for native ageritin. The A. aegerita ageritin-encoding gene, AaeAGT1, is highly induced during fruiting, and toxicity assays with AaeAGT1 heterologously expressed in Escherichia coli showed a strong toxicity against Aedes aegypti larvae yet not against nematodes. The activity of recombinant A. aegerita ageritin toward rabbit ribosomes was confirmed in vitro Mutagenesis studies revealed a correlation between in vivo and in vitro activities, indicating that entomotoxicity is mediated by ribonucleolytic cleavage. The strong larvicidal activity of ageritin makes this protein a promising candidate for novel biopesticide development.IMPORTANCE Our results suggest a pronounced organismal specificity of a protein toxin with a very conserved intracellular molecular target. The molecular details of the toxin-target interaction will provide important insight into the mechanism of action of protein toxins and the ribosome. This insight might be exploited to develop novel bioinsecticides.


Asunto(s)
Agaricales/metabolismo , Agrocybe/metabolismo , Micotoxinas/metabolismo , Micotoxinas/toxicidad , Ribonucleasas/metabolismo , Ribonucleasas/toxicidad , Agaricales/genética , Agrocybe/genética , Secuencia de Aminoácidos , Animales , Culicidae/efectos de los fármacos , Proteínas Fúngicas/genética , Regulación Fúngica de la Expresión Génica , Larva/efectos de los fármacos , Mutagénesis , Mutación , Micotoxinas/química , Micotoxinas/genética , Proteínas Recombinantes , Ribonucleasas/química , Ribonucleasas/genética , Ribosomas/efectos de los fármacos , Células Sf9/efectos de los fármacos
10.
Malar J ; 15: 243, 2016 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-27118476

RESUMEN

BACKGROUND: The World Health Organization (WHO) cone bioassay plays an integral role in the evaluation of the efficacy of long-lasting insecticidal nets as well as insecticides used in indoor residual spraying. The test is used on a variety of treated substrates, such as pieces of bed nets, mud, cement and wood. The cone setup assumes a wide variety of angles under different settings in which it is applied. However, the guidelines provided for the performance of the assay do not specify the angle at which the test must be performed. METHODS: Laboratory colonies of Anopheles gambiae Kisumu-1 and Anopheles stephensi STI were tested in the WHO cone bioassay at four different angles (0°, 45°, 60° and 90°) following the WHO guidelines against net pieces of Olyset Plus and Netprotect. The tests were repeated after 20 washes of the nets. Individual mosquitoes were also exposed at 0° and 60° and the amount of time each spent in contact with the net was recorded. RESULTS: Mosquitoes spent more time on the net at 60° as compared to 0° (coefficient = 45.8, 95 % CI 34.6-55.6, p < 0.001) and were more likely to die when the test was done at 45° (OR 3.3, 95 % CI 1.7-6.3, p = 0.001), 60° (OR 3.1, 95 % CI 1.7-5.9, p < 0.001) and 90° (OR 6.0, 95 % CI 1.9-18.5, p = 0.002) as compared to 0°. CONCLUSION: The angle at which the test is performed significantly affects the amount of time mosquitoes spend resting on the nets, and subsequently mortality. Angle must thus be considered as an important component in the performance of the assay and duly incorporated into the guidelines.


Asunto(s)
Anopheles/fisiología , Bioensayo/normas , Insectos Vectores/fisiología , Mosquiteros Tratados con Insecticida/normas , Control de Mosquitos/instrumentación , Animales , Insecticidas , Malaria/prevención & control , Malaria/transmisión , Organización Mundial de la Salud
11.
Proc Natl Acad Sci U S A ; 109(16): 6147-52, 2012 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-22460795

RESUMEN

In the last decade there have been marked reductions in malaria incidence in sub-Saharan Africa. Sustaining these reductions will rely upon insecticides to control the mosquito malaria vectors. We report that in the primary African malaria vector, Anopheles gambiae sensu stricto, a single enzyme, CYP6M2, confers resistance to two classes of insecticide. This is unique evidence in a disease vector of cross-resistance associated with a single metabolic gene that simultaneously reduces the efficacy of two of the four classes of insecticide routinely used for malaria control. The gene-expression profile of a highly DDT-resistant population of A. gambiae s.s. from Ghana was characterized using a unique whole-genome microarray. A number of genes were significantly overexpressed compared with two susceptible West African colonies, including genes from metabolic families previously linked to insecticide resistance. One of the most significantly overexpressed probe groups (false-discovery rate-adjusted P < 0.0001) belonged to the cytochrome P450 gene CYP6M2. This gene is associated with pyrethroid resistance in wild A. gambiae s.s. populations) and can metabolize both type I and type II pyrethroids in recombinant protein assays. Using in vitro assays we show that recombinant CYP6M2 is also capable of metabolizing the organochlorine insecticide DDT in the presence of solubilizing factor sodium cholate.


Asunto(s)
Anopheles/genética , Sistema Enzimático del Citocromo P-450/genética , Proteínas de Insectos/genética , Resistencia a los Insecticidas/genética , Animales , Anopheles/crecimiento & desarrollo , Cromatografía Líquida de Alta Presión , Sistema Enzimático del Citocromo P-450/metabolismo , DDT/metabolismo , DDT/farmacología , Femenino , Perfilación de la Expresión Génica , Ghana , Humanos , Proteínas de Insectos/metabolismo , Insectos Vectores/efectos de los fármacos , Insectos Vectores/genética , Insectos Vectores/crecimiento & desarrollo , Insecticidas/clasificación , Insecticidas/metabolismo , Insecticidas/farmacología , Malaria/prevención & control , Control de Mosquitos/métodos , Análisis de Secuencia por Matrices de Oligonucleótidos , Piretrinas/metabolismo , Piretrinas/farmacología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
12.
Malar J ; 13: 332, 2014 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-25152326

RESUMEN

BACKGROUND: The wide-scale implementation of insecticide-treated nets and indoor residual spraying (IRS) has contributed to a considerable decrease of malaria morbidity and mortality in sub-Saharan Africa over the last decade. Due to increasing resistance in Anopheles gambiae sensu lato mosquitoes to dichlorodiphenyl trichloroethane (DDT) and pyrethroids, alternative insecticide formulations for IRS with long-lasting residual activity are required to sustain the gains obtained in most malaria-endemic countries. METHODS: Three experimental capsule suspension (CS) formulations of the organophosphate pirimiphos-methyl were evaluated together with Actellic 50 EC, an emulsifiable concentrate (EC) of pirimiphos-methyl, and the pyrethroid ICON 10 CS, a lambda-cyhalothrin CS formulation, in an experimental hut trial. The formulations were tested on two types of surfaces: mud and cement. The study with a 12-month follow-up was carried out in Bouaké, central Côte d'Ivoire, where An. gambiae mosquitoes show high levels of resistance against pyrethroids, DDT and carbamates. Residual activity was also tested in cone bioassays with the susceptible An. gambiae KISUMU strain. RESULTS: One of the CS formulations of pirimiphos-methyl, CS BM, outperformed all other formulations tested. On cement surfaces, the odds ratios of overall insecticidal effect on An. gambiae s.l. of pirimiphos-methyl CS BM compared to Actellic 50 EC were 1.4 (95% confidence interval (CI): 1.2-1.7) for the first three months, 5.6 (95% CI: 4.4-7.2) for the second three months, and 3.6 (95% CI: 3.0-4.4) for the last six months of follow-up. On mud surfaces, the respective odds ratios were 2.5 (95% CI: 1.9-3.3), 3.5 (95% CI: 2.7-4.5), and 1.7 (95% CI: 1.4-2.2). On cement, the residual activity of pirimiphos-methyl CS BM measured using cone tests was similar to that of lambda-cyhalothrin and for both treatments, mortality of susceptible Kisumu laboratory strain was not significantly below the World Health Organization pre-set threshold of 80% for 30 weeks after spraying. Residual activity was shorter on mud surfaces, mortality falling below 80% on both pirimiphos-methyl CS BM and lambda-cyhalothrin treated surfaces at 25 weeks post-treatment. CONCLUSION: CS formulations of pirimiphos-methyl are promising alternatives for IRS, as they demonstrate prolonged insecticidal effect and residual activity against malaria mosquitoes.


Asunto(s)
Anopheles/efectos de los fármacos , Insectos Vectores/efectos de los fármacos , Insecticidas/farmacología , Compuestos Organotiofosforados/farmacología , Animales , Anopheles/fisiología , Côte d'Ivoire , Piretrinas/farmacología , Análisis de Supervivencia
13.
Sci Rep ; 14(1): 24745, 2024 10 21.
Artículo en Inglés | MEDLINE | ID: mdl-39433539

RESUMEN

Topical repellents provide protection against mosquito bites and their efficacy is often assessed using the arm-in-cage test. The arm-in-cage test estimates the repellent's protection time by exposing a repellent-treated forearm to host-seeking mosquitoes inside a cage at regular intervals until the first confirmed mosquito bite. However, the test does not reveal the repellents' behavioural mode of action. To understand how mosquitoes interact with topical repellents in the arm-in-cage test, we used a 3D infrared video camera system to track individual Aedes aegypti and Anopheles stephensi females during exposure to either a repellent-treated or an untreated forearm. The repellents tested were 20% (m/m) ethanolic solutions of N, N-diethyl-meta-toluamide, p-menthane-3,8-diol, icaridin and ethyl butylacetylaminopropionate. All four repellents substantially reduced the number of bites compared to an untreated forearm, while the flight trajectories indicate that the repellents do not prevent skin contact as the mosquitoes made multiple brief contacts with the treated forearm. We conclude that, in the context of the arm-in-cage test, topical repellents activate mosquitoes to disengage from the forearm with undirected displacements upon contact rather than being repelled at distance by volatile odorants.


Asunto(s)
Aedes , Anopheles , Repelentes de Insectos , Repelentes de Insectos/farmacología , Animales , Femenino , Aedes/efectos de los fármacos , Aedes/fisiología , Anopheles/efectos de los fármacos , Anopheles/fisiología , Mordeduras y Picaduras de Insectos/prevención & control , Control de Mosquitos/métodos , Humanos , Administración Tópica , DEET/farmacología
14.
Sci Rep ; 14(1): 13598, 2024 06 12.
Artículo en Inglés | MEDLINE | ID: mdl-38866869

RESUMEN

In addition to killing, mosquito nets treated with permethrin have been claimed to repel mosquitoes, reducing their success in passing through a holed net. We have tested this hypothesis by tracking mosquitoes in a modified World Health Organization tunnel test. In the original assay, mosquitoes are released at one end of the tunnel and have to pass through a holed piece of net to reach the bait at the other end. The mosquitoes are left in the tunnel overnight, while mortality and feeding rates are scored the following morning. Since the original test does not reveal how mosquitoes move within the tunnel, we combined the tunnel with a 3D video camera system. We tracked susceptible and permethrin-resistant Anopheles gambiae s.s. as they moved in the tunnel and interacted with an untreated or a permethrin-treated net (Olyset Net®). Surprisingly, while permethrin increased the mortality and reduced blood-feeding rates, twice as many mosquitoes passed through the holes of the permethrin-treated net. The flight trajectories reveal that upon exposure to the permethrin-treated net, both mosquito colonies showed increased 'excitation', thereby augmenting their chance of getting through the holes in the net. The study underlines the complexity of behavioural modes of action of insecticides.


Asunto(s)
Anopheles , Control de Mosquitos , Permetrina , Animales , Permetrina/farmacología , Anopheles/efectos de los fármacos , Control de Mosquitos/métodos , Grabación en Video , Insecticidas/farmacología , Mosquiteros Tratados con Insecticida , Conducta Alimentaria/efectos de los fármacos , Resistencia a los Insecticidas , Mosquiteros
15.
Parasit Vectors ; 16(1): 342, 2023 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-37789458

RESUMEN

BACKGROUND: Pyrethroid resistance in the key malaria vectors threatens the success of pyrethroid-treated nets. To overcome pyrethroid resistance, Interceptor® G2 (IG2), a 'first-in-class' dual insecticidal net that combines alpha-cypermethrin with chlorfenapyr, was developed. Chlorfenapyr is a pro-insecticide, requiring bio-activation by oxidative metabolism within the insect's mitochondria, constituting a mode of action preventing cross-resistance to pyrethroids. Recent epidemiological trials conducted in Benin and Tanzania confirm IG2's public health value in areas with pyrethroid-resistant Anopheles mosquitoes. As chlorfenapyr might also interfere with the metabolic mechanism of the Plasmodium parasite, we hypothesised that chlorfenapyr may provide additional transmission-reducing effects even if a mosquito survives a sub-lethal dose. METHODS: We tested the effect of chlorfenapyr netting to reduce Plasmodium falciparum transmission using a modified WHO tunnel test with a dose yielding sub-lethal effects. Pyrethroid-resistant Anopheles gambiae s.s. with L1014F and L1014S knockdown resistance alleles and expression levels of pyrethroid metabolisers CYP6P3, CYP6M2, CYP4G16 and CYP6P1 confirmed by quantitative reverse transcription polymerase chain reaction (RT-qPCR) prior to conducting experiments were exposed to untreated netting and netting treated with 200 mg/m3 chlorfenapyr for 8 h overnight and then fed on gametocytemic blood meals from naturally infected individuals. Prevalence and intensity of oocysts and sporozoites were determined on day 8 and day 16 after feeding. RESULTS: Both prevalence and intensity of P. falciparum infection in the surviving mosquitoes were substantially reduced in the chlorfenapyr-exposed mosquitoes compared to untreated nets. The odds ratios in the prevalence of oocysts and sporozoites were 0.33 (95% confidence interval; 95% CI 0.23-0.46) and 0.43 (95% CI 0.25-0.73), respectively, while only the incidence rate ratio for oocysts was 0.30 (95% CI 0.22-0.41). CONCLUSION: We demonstrated that sub-lethal exposure of pyrethroid-resistant mosquitoes to chlorfenapyr substantially reduces the proportion of infected mosquitoes and the intensity of the P. falciparum infection. This will likely also contribute to the reduction of malaria in communities beyond the direct killing of mosquitoes.


Asunto(s)
Anopheles , Mosquiteros Tratados con Insecticida , Insecticidas , Malaria Falciparum , Malaria , Parásitos , Piretrinas , Animales , Humanos , Anopheles/fisiología , Plasmodium falciparum , Resistencia a los Insecticidas , Control de Mosquitos , Mosquitos Vectores/fisiología , Piretrinas/farmacología , Insecticidas/farmacología , Malaria Falciparum/prevención & control , Malaria/prevención & control , Probabilidad
16.
Parasit Vectors ; 16(1): 270, 2023 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-37559080

RESUMEN

BACKGROUND: Insecticide-based malaria vector control is increasingly undermined due to the development of insecticide resistance in mosquitoes. Insecticide resistance may partially be related to the use of pesticides in agriculture, while the level and mechanisms of resistance might differ between agricultural practices. The current study aimed to assess whether phenotypic insecticide resistance and associated molecular resistance mechanisms in Anopheles gambiae sensu lato differ between agricultural practices. METHODS: We collected An. gambiae s.l. larvae in six sites with three different agricultural practices, including rice, vegetable and cocoa cultivation. We then exposed the emerging adult females to discriminating concentrations of bendiocarb (0.1%), deltamethrin (0.05%), DDT (4%) and malathion (5%) using the standard World Health Organization insecticide susceptibility test. To investigate underlying molecular mechanisms of resistance, we used multiplex TaqMan qPCR assays. We determined the frequency of target-site mutations, including Vgsc-L995F/S and Vgsc-N1570Y, and Ace1-G280S. In addition, we measured the expression levels of genes previously associated with insecticide resistance in An. gambiae s.l., including the cytochrome P450-dependent monooxygenases CYP4G16, CYP6M2, CYP6P1, CYP6P3, CYP6P4, CYP6Z1 and CYP9K1, and the glutathione S-transferase GSTe2. RESULTS: The An. gambiae s.l. populations from all six agricultural sites were resistant to bendiocarb, deltamethrin and DDT, while the populations from the two vegetable cultivation sites were additionally resistant to malathion. Most tested mosquitoes carried at least one mutant Vgsc-L995F allele that is associated with pyrethroid and DDT resistance. In the cocoa cultivation sites, we observed the highest 995F frequencies (80-87%), including a majority of homozygous mutants and several in co-occurrence with the Vgsc-N1570Y mutation. We detected the Ace1 mutation most frequently in vegetable-growing sites (51-60%), at a moderate frequency in rice (20-22%) and rarely in cocoa-growing sites (3-4%). In contrast, CYP6M2, CYP6P3, CYP6P4, CYP6Z1 and CYP9K1, previously associated with metabolic insecticide resistance, showed the highest expression levels in the populations from rice-growing sites compared to the susceptible Kisumu reference strain. CONCLUSION: In our study, we observed intriguing associations between the type of agricultural practices and certain insecticide resistance profiles in the malaria vector An. gambiae s.l. which might arise from the use of pesticides deployed for protecting crops.


Asunto(s)
Anopheles , Insecticidas , Malaria , Piretrinas , Animales , Femenino , Insecticidas/farmacología , Resistencia a los Insecticidas/genética , DDT , Côte d'Ivoire , Malatión , Mosquitos Vectores/genética , Piretrinas/farmacología , Agricultura
17.
Parasit Vectors ; 16(1): 21, 2023 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-36670470

RESUMEN

BACKGROUND: The continued spread of insecticide resistance in mosquito vectors of malaria and arboviral diseases may lead to operational failure of insecticide-based interventions if resistance is not monitored and managed efficiently. This study aimed to develop and validate a new WHO glass bottle bioassay method as an alternative to the WHO standard insecticide tube test to monitor mosquito susceptibility to new public health insecticides with particular modes of action, physical properties or both. METHODS: A multi-centre study involving 21 laboratories worldwide generated data on the susceptibility of seven mosquito species (Aedes aegypti, Aedes albopictus, Anopheles gambiae sensu stricto [An. gambiae s.s.], Anopheles funestus, Anopheles stephensi, Anopheles minimus and Anopheles albimanus) to seven public health insecticides in five classes, including pyrethroids (metofluthrin, prallethrin and transfluthrin), neonicotinoids (clothianidin), pyrroles (chlorfenapyr), juvenile hormone mimics (pyriproxyfen) and butenolides (flupyradifurone), in glass bottle assays. The data were analysed using a Bayesian binomial model to determine the concentration-response curves for each insecticide-species combination and to assess the within-bioassay variability in the susceptibility endpoints, namely the concentration that kills 50% and 99% of the test population (LC50 and LC99, respectively) and the concentration that inhibits oviposition of the test population by 50% and 99% (OI50 and OI99), to measure mortality and the sterilizing effect, respectively. RESULTS: Overall, about 200,000 mosquitoes were tested with the new bottle bioassay, and LC50/LC99 or OI50/OI99 values were determined for all insecticides. Variation was seen between laboratories in estimates for some mosquito species-insecticide combinations, while other test results were consistent. The variation was generally greater with transfluthrin and flupyradifurone than with the other compounds tested, especially against Anopheles species. Overall, the mean within-bioassay variability in mortality and oviposition inhibition were < 10% for most mosquito species-insecticide combinations. CONCLUSION: Our findings, based on the largest susceptibility dataset ever produced on mosquitoes, showed that the new WHO bottle bioassay is adequate for evaluating mosquito susceptibility to new and promising public health insecticides currently deployed for vector control. The datasets presented in this study have been used recently by the WHO to establish 17 new insecticide discriminating concentrations (DCs) for either Aedes spp. or Anopheles spp. The bottle bioassay and DCs can now be widely used to monitor baseline insecticide susceptibility of wild populations of vectors of malaria and Aedes-borne diseases worldwide.


Asunto(s)
Anopheles , Insecticidas , Malaria , Piretrinas , Animales , Femenino , Insecticidas/farmacología , Mosquitos Vectores , Salud Pública , Teorema de Bayes , Control de Mosquitos/métodos , Piretrinas/farmacología , Resistencia a los Insecticidas , Bioensayo , Organización Mundial de la Salud
18.
Malar J ; 11: 167, 2012 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-22587687

RESUMEN

BACKGROUND: Long-lasting treatment kits, designed to transform untreated nets into long-lasting insecticidal nets (LLINs), may facilitate high coverage with LLINs where non-treated nets are in place. In this study, the efficacy of ICON® Maxx (Syngenta) was evaluated under laboratory conditions and in an experimental hut trial in central Côte d'Ivoire, where Anopheles gambiae s.s. are resistant to pyrethroid insecticides. METHODS: In the laboratory, polyester and polyethylene net samples were treated with ICON® Maxx, washed up to 20 times and their efficacy determined in World Health Organization (WHO) cone assays against a susceptible laboratory An. gambiae s.s. colony. Over a 12-month period, the polyester nets were evaluated in a hut trial to determine mosquito deterrence, induced exophily, blood-feeding inhibition and mortality. RESULTS: In the laboratory, ICON® Maxx-treated polyethylene nets showed higher efficacy against pyrethroid-susceptible mosquitoes than polyester nets. After 20 washings, insecticidal efficacy in bioassays was 59.4% knockdown (KD) and 22.3% mortality for polyethylene, and 55.3% KD and 17.9% mortality for polyester nets. In experimental huts, treated nets showed strong deterrence, induced exophily and an over three-fold reduction in blood-fed mosquitoes. More than half (61.8%) of the mosquitoes entering the huts with treated nets were found dead the next morning despite high levels of KD resistance. After washing the treated nets, KD and mortality rates were close to or exceeded predefined WHO thresholds in cone bioassays. CONCLUSION: In contrast to previous laboratory investigation, ICON® Maxx-treated nets showed only moderate KD and mortality rates. However, under semi-field conditions, in an area where mosquitoes are resistant to pyrethroids, ICON® Maxx showed high deterrence, induced exophily and provided a significant reduction in blood-feeding rates; features that are likely to have a positive impact in reducing malaria transmission. The WHO cone test may not always be a good proxy for predicting product performance under field conditions.


Asunto(s)
Anopheles/efectos de los fármacos , Insecticidas/farmacología , Adolescente , Adulto , Animales , Bioensayo , Côte d'Ivoire , Conducta Alimentaria/efectos de los fármacos , Femenino , Humanos , Mosquiteros Tratados con Insecticida , Masculino , Control de Mosquitos/métodos , Análisis de Supervivencia , Adulto Joven
19.
Ecol Evol ; 12(7): e9138, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35903757

RESUMEN

Aedes albopictus originates from Southeast Asia and is considered one of the most invasive species globally. This mosquito is a nuisance and a disease vector of significant public health relevance. In Europe, Ae. albopictus is firmly established and widespread south of the Alps, a mountain range that forms a formidable biogeographic barrier to many organisms. Recent reports of Ae. albopictus north of the Alps raise questions of (1) the origins of its recent invasion, and (2) if this mosquito has established overwintering populations north of the Alps. To answer these questions, we analyzed population genomic data from >4000 genome-wide SNPs obtained through double-digest restriction site-associated DNA sequencing. We collected SNP data from specimens from six sites in Switzerland, north and south of the Alps, and analyzed them together with specimens from other 33 European sites, five from the Americas, and five from its Asian native range. At a global level, we detected four genetic clusters with specimens from Indonesia, Brazil, and Japan as the most differentiated, whereas specimens from Europe, Hong Kong, and USA largely overlapped. Across the Alps, we detected a weak genetic structure and high levels of genetic admixture, supporting a scenario of rapid and human-aided dispersal along transportation routes. While the genetic pattern suggests frequent re-introductions into Switzerland from Italian sources, the recovery of a pair of full siblings in two consecutive years in Strasbourg, France, suggests the presence of an overwintering population north of the Alps. The suggestion of overwintering populations of Ae. albopictus north of the Alps and the expansion patterns identified points to an increased risk of further northward expansion and the need for increased surveillance of mosquito populations in Northern Europe.

20.
PLoS Negl Trop Dis ; 16(3): e0010310, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35316268

RESUMEN

[This corrects the article DOI: 10.1371/journal.pntd.0006845.].

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA