Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Inorg Chem ; 62(38): 15346-15351, 2023 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-37682658

RESUMEN

Its high coordination number and tendency to cluster make Th4+ suitable for constructing metal-organic frameworks (MOFs) with novel topologies. In this work, two novel thorium-based heterometallic MOF isomers (IHEP-17 and IHEP-18) were assembled from a Th6 cluster, a multifunctional organic ligand [4-(1H-pyrazol-4-yl)benzoic acid (HPyba)], and Cu2+/Ni2+ cations via the one-pot solvothermal synthesis strategy. The framework features a 6,12-connected new topology net and contains two kinds of supramolecular cage structures, Th36M4 and Th24M2, suitable for guest exchange. Both MOF materials can efficiently adsorb I2. X-ray photoelectron spectroscopy, Raman spectroscopy, and single-crystal X-ray diffraction indicate that the adsorbed iodine is uniformly distributed within the Th36M4 cage but not the Th24M2 cage in the form of I3-.

2.
Environ Res ; 231(Pt 2): 116160, 2023 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-37209988

RESUMEN

Practical adsorbents with high efficiency are essential to effectively treating wastewater. Herein, a novel porous uranium adsorbent (PA-HCP) having a considerable amount of amine and phosphoryl groups was designed and synthesized by grafting polyethyleneimine (PEI) on a hyper-cross-linked fluorene-9-bisphenol skeleton via phosphoramidate linkers. Furthermore, it was used to treat uranium contamination in the environment. PA-HCP exhibited a large specific surface area (up to 124 m2/g) and a pore diameter of 2.5 nm. Batch uranium adsorptions on PA-HCP were investigated methodically. PA-HCP demonstrated a uranium sorption capacity of >300 mg/g in the pH range of 4-10 (C0 = 60 mg/L, T = 298.15 K), with its maximum capacity reaching 573.51 mg/g at pH = 7. The uranium sorption process obeyed the pseudo-second-order model and fitted well with the Langmuir isothermal. In the thermodynamic experiments, uranium sorption on PA-HCP was revealed to be an endothermic, spontaneous process. Even in the presence of competing metal ions, PA-HCP exhibited excellent sorption selectivity for uranium. Additionally, excellent recyclability can be achieved after six cycles. Based on FT-IR and XPS measurements, both the PO and -NH2 (and/or -NH-) groups on PA-HCP contributed to efficient uranium adsorption as a result of the strong coordination between these groups and uranium. Furthermore, the high hydrophilicity of the grafted PEI improved the dispersion of the adsorbents in water and facilitated uranium sorption. These findings suggest that PA-HCP can be used as an efficient and economical sorbent to remove U(VI) from wastewater.


Asunto(s)
Polímeros , Uranio , Agua , Aguas Residuales , Polietileneimina , Espectroscopía Infrarroja por Transformada de Fourier , Adsorción , Cinética , Concentración de Iones de Hidrógeno
3.
Environ Res ; 239(Pt 1): 117358, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37821070

RESUMEN

Here, we have demonstrated an innovative decontamination strategy using molten salts as a solvent to clean stubborn uranium contaminants on stainless steel surfaces. The aim of this work was to investigate the evolutionary path of contaminants in molten salts to reveal the decontamination mechanism, thus providing a basis for the practical application of the method. Thermodynamic analysis revealed that alkali metal hydroxides, carbonates, chlorides and nitrates can react with uranium oxides (UO3 and U3O8) to form various uranates. Notably, the decontamination mechanism was elucidated by analyzing the chemical composition of the contaminants in the molten salts and the surface morphology of the specimens considering NaOH-Na2CO3-NaCl melt as the decontaminant. The decontamination process involved two stages: a rapid decontamination stage dominated by the thermal effect of molten salt, and a stable decontamination stage governed by the chemical reactions and diffusion of molten salt. Subsequently, a multiple decontamination strategy was implemented to achieve high decontamination rates and low residual radioactivity. Within the actual cleaning time of 30 min, the decontamination efficiency (DE) of UO3-contaminated specimens reached 97.8% and 93.0% for U3O8-contaminated specimens. Simultaneously, the radioactivity levels of all specimens were reduced to below the control level for reuse in the nuclear domain. Particularly, the actual radioactive waste from the nuclear industry reached a reusable level of radioactivity after decontamination. The NaOH-Na2CO3-NaCl melt outperforms conventional chemical solvents and may be one of the most rapid and efficient decontaminants for stubborn uranium contamination of metal surfaces, which provides insights in regard to handling nuclear waste.


Asunto(s)
Radiactividad , Uranio , Cloruro de Sodio , Acero Inoxidable , Sales (Química) , Hidróxido de Sodio , Solventes
4.
J Environ Manage ; 342: 118151, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37201392

RESUMEN

The recycling of uranium in wastewater is not only beneficial to the protection of ecological safety but also has great significance for the sustainable development of nuclear energy. However, there is no satisfactory method to recover and reuse uranium efficiently up to now. Here, we have developed an efficient and economical strategy that can achieve uranium recovery and direct reuse in wastewater. The feasibility analysis verified that the strategy still had good separation and recovery ability in acidic, alkaline, and high-salinity environments. The purity of uranium recovered from the separated liquid phase after electrochemical purification was up to about 99.95%. Ultrasonication could greatly increase the efficiency of this strategy, and 99.00% of high-purity uranium could be recovered within 2 h. We further improved the overall recovery rate by recovering the residual solid-phase uranium, and the overall recovery of uranium was increased to 99.40%. Moreover, the concentration of impurity ions in the recovered solution met the World Health Organization guidelines. In summary, the development of this strategy is of great importance for the sustainable use of uranium resources and environmental protection.


Asunto(s)
Energía Nuclear , Uranio , Purificación del Agua , Aguas Residuales , Purificación del Agua/métodos
5.
Molecules ; 26(4)2021 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-33673249

RESUMEN

The low cost ß-zeolite and ethylenediamine modified ß-zeolite (EDA@ß-zeolite) were prepared by self-assembly method and used for Cu(II) removal from contaminated aqueous solution. Removal ability of ß-zeolite toward Cu(II) was greatly improved after ethylenediamine (EDA) modification, the removal performance was greatly affected by environmental conditions. XPS results illustrated that the amide group played important role in the removal process by forming complexes with Cu(II). The EDA@ß-zeolite showed desirable recycling ability. The finding herein suggested that the proposed composite is a promising and suitable candidate for the removal of Cu(II) from contaminated natural wastewater and aquifer.


Asunto(s)
Cobre/aislamiento & purificación , Etilenodiaminas/química , Contaminantes Químicos del Agua/aislamiento & purificación , Zeolitas/química , Adsorción , Cobre/toxicidad , Humanos , Agua/química , Contaminantes Químicos del Agua/toxicidad
6.
Water Res ; 268(Pt A): 122655, 2024 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-39461218

RESUMEN

Fenton-like advanced oxidation processes (AOPs) are commonly used to eliminate recalcitrant organic pollutants as they produce highly reactive oxygen species through the reactions between the catalysts and oxidants. Recently, considerable attention has been directed towards shell-structured Fenton-like catalysts that offer high stability, maximum utilization of active sites, and exceptional catalytic performance. In this review, we have introduced the concept of several typical shell-forming architectures (e.g., hollow structure, core-shell structure, yolk-shell structure, particle-in-tube structure, and multi-shelled structure), elucidating their role in promoting Fenton-like reaction catalysis through the nanoconfinement mechanism. In each aspect, the correlation between the shell-induced effects and the Fenton-like catalytic performance is highlighted. Finally, future challenges and opportunities for the development of shell-structured Fenton-like catalysts towards AOPs are presented, offering bright practical application prospects.

7.
Int J Biol Macromol ; 276(Pt 1): 133890, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39019371

RESUMEN

Based on the goal of "carbon neutralization and carbon peaking", it is still challenging to develop a high adsorption performance and environmentally friendly material for uranium extraction. We proposed a new idea of "Three-Dimensional Environmental-Friendly". A series of amino acid bis-substituted chitosan aerogels (C-1, C-2, C-3, C-4 and C-5) were prepared by ice template method and selective substitution reaction in water environment. Among them, C-3 adsorbent has the antibacterial properties of gram-positive bacteria, gram-negative bacteria and marine bacteria, which is more suitable for uranium adsorption in complex environments. Also, C-3 adsorbent solves the shortcomings of poor adsorption property and easy to cause secondary pollution during modification of traditional chitosan materials. The selectivity and adsorption capacity of uranium are further improved by the unique functional groups of serine residues. At pH = 7, the maximum adsorption capacity reaches 606.32 mg/g. In addition, C-3 adsorbent have excellent selectivity and stability. The synergistic effect of coordination, electrostatic interaction and intraparticle diffusion between C-3 adsorbent and uranium may be the key to its high adsorption performance. The high performance of chitosan adsorbent provides a new idea for the design and application of green and efficient uranium adsorption materials.


Asunto(s)
Aminoácidos , Antibacterianos , Quitosano , Uranio , Quitosano/química , Uranio/química , Adsorción , Antibacterianos/farmacología , Antibacterianos/química , Aminoácidos/química , Geles/química , Concentración de Iones de Hidrógeno
8.
J Hazard Mater ; 465: 133320, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38142653

RESUMEN

The purpose of this research was to design and synthesize an adsorbent based on polyimide covalent organic frameworks (PICOFs) for uranium-containing wastewater treatment and uranium recovery. A modified solvothermal method was innovatively proposed to synthesize PICOFs with high specific surface area (1998.5 m2 g-1) and regular pore structure. Additionally, a convenient functionalization strategy of PICOFs was designed through polydopamine (PDA) and a well-dispersed polymer (MPC-co-AO) containing multiple functional groups, forming stable composite (PMCA-TPPICOFs) in which the hydrogen bonding and cation-π interactions between PDA and MPC-co-AO played a key role. The obtained PMCA-TPPICOFs as an adsorbent exhibited strong selectivity for uranyl ions (maximum adsorption capacity was 538 mg g-1). In simulated wastewater with low uranium concentrations, the removal rate reached 98.3%, and the concentration of treated simulated wastewater met discharge standards. Moreover, PMCA-TPPICOFs was suitable for fixed-bed column adsorption because of its favorable structure. According to the research about adsorption mechanism, the adsorption primarily relied on electrostatic interaction and complexation. In summary, PMCA-TPPICOFs exhibited good potential for uranium-containing wastewater treatment, expanding the application of PICOFs. And the proposed functionalization strategy and modified solvothermal method may promote research in the fields of material functionalization and COFs synthesis. ENVIRONMENTAL IMPLICATION: Uranium is a raw material for nuclear energy applications, which is toxic and radioactive. If uranium is discharged with wastewater, it would not only pose a threat to the environmental protection and life safety, but also cause the loss of precious nuclear raw materials. Although adsorption was considered to be an effective way to remove uranium, many of the developed adsorbents were difficult to apply due to the harsh wastewater environment and complex preparation processes. This study reported a novel adsorbent and a new functionalization strategy, which was expected to solve the problem of uranium recovery in wastewater.

9.
Environ Sci Pollut Res Int ; 31(11): 16554-16570, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38319420

RESUMEN

The directed construction of productive adsorbents is essential to avoid damaging human health from the harmful radioactive and toxic U(VI)-containing wastewater. Herein, a sort of Zr-based metal organic framework (MOF) called PCN-222 was synthesized and oxime functionalized based on directed molecular structure design to synthesize an efficient adsorbent with antimicrobial activity, named PCN-222-OM, for recovering U(VI) from wastewater. PCN-222-OM unfolded splendid adsorption capacity (403.4 mg·g-1) at pH = 6.0 because of abundant holey structure and mighty chelation for oxime groups with U(VI) ions. PCN-222-OM also exhibited outstanding selectivity and reusability during the adsorption. The XPS spectra authenticated the -NH and oxime groups which revealed a momentous function. Concurrently, PCN-222-OM also possessed good antimicrobial activity, antibiofouling activity, and environmental safety; adequately decreased detrimental repercussions about bacteria and Halamphora on adsorption capacity; and met non-toxic and non-hazardous requirements for the application. The splendid antimicrobial activity and antibiofouling activity perhaps arose from the Zr6(µ3-O)4(µ3-OH)4(H2O)4(OH)4 clusters and rich functional groups within PCN-222-OM. Originally proposed PCN-222-OM was one potentially propitious material to recover U(VI) in wastewater on account of outstanding adsorption capacity, antimicrobial activity, antibiofouling activity, and environmental safety, meanwhile providing a newfangled conception on the construction of peculiar efficient adsorbent.


Asunto(s)
Antiinfecciosos , Uranio , Humanos , Aguas Residuales , Uranio/análisis , Oximas , Estructura Molecular , Adsorción , Cinética
10.
Carbohydr Polym ; 343: 122464, 2024 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-39174121

RESUMEN

To achieve the goals of "carbon peak and carbon neutrality" and sustainable development, we propose "Three-Dimensional Environment-Friendly" materials to balance the urgent need for the development of clean energy and the reduction of secondary environmental pollution during adsorbent preparation. In this study, three novel chitosan adsorbents (CMNSC-Leu, CMNSC-Pro, CMNSC-Phe) for uranium adsorption were designed on the basis of molecular level and successfully synthesized with three different amino acids (leucine, proline, phenylalanine) through amidation reaction in an aqueous environment using a sustainable green chitosan material. The uranium adsorption capacity of the three adsorbents was evaluated by batch adsorption, selectivity and recyclability studies. The adsorption reaction conformed to the pseudo-second-order model and was a spontaneous endothermic reaction. In particular, the maximum adsorption capacity of CMNSC-Pro for uranium was 462.7 mg·g-1 at C0 = 100 ppm. In addition, CMNSC-Pro showed better selectivity and good reusability. DFT calculation and IRI diagram were applied in this work to analyze the unique structure and adsorption process of CMNSC-Pro from the perspective of structure. Uranium was adsorbed by CMNSC-Pro via coordination, electrostatic interaction, and intraparticle diffusion. This work provided a new idea for the structural design and construction of new high-efficiency biomass adsorbents.

11.
Nat Commun ; 15(1): 7724, 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39231963

RESUMEN

Unimolecular reduction and bimolecular reductive coupling of carbon monoxide (CO) represent important ways to synthesize organic feedstocks. Reductive activation of CO through open-shell pathways, though rare, can help overcome the barriers of many traditional organometallic elementary reactions that are hard to achieve. Herein we successfully achieve the unimolecular reduction of CO to (TPP)RhCH2OSiR1R2R3 (TPP = 5,10,15,20-tetraphenylporphyrin), and the release of products CH3OSiR1R2R3, TEMPO-CH2OSiR1R2R3 and BrCH2OSiR1R2R3 in near-quantitative yield under visible light (420-780 nm), which involves radical formation from Rh-C bond homolysis. Bimolecular CO reductive coupling products, (TPP)RhCOCH2OSiR1R2R3, are then obtained via a radical mechanism. Subsequent treatment with n-propylamine, BrCCl3 or TEMPO under thermal or photochemical conditions afford small-molecule bimolecular reductive coupling products. To the best of our knowledge, homogeneous systems which reductively couple CO under photochemical conditions have not been reported before. Here, the use of an open-shell transition metal complex, that delivers more than one kind of small-molecule CO reductive coupling products bearing different functional groups, provides opportunities for useful CO reductive transformations.

12.
Materials (Basel) ; 16(19)2023 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-37834588

RESUMEN

Nuclear power has experienced rapid development as a green energy source due to the increasing global demand for energy. Uranium, as the primary fuel for nuclear reactions, plays a crucial role in nuclear energy production, and seawater-uranium extraction has gained significant attention. However, the extraction of uranium is usually susceptible to contamination by microorganisms, such as bacteria, which can negatively affect the adsorption performance of uranium adsorption materials. Therefore, an important challenge lies in the development of new antibacterial and antiadhesion materials to inhibit the attachment of marine microorganisms. These advancements aim to reduce the impact on the adsorption capability of the adsorbent materials. This paper reviews the antibiofouling materials used for extracting seawater uranium, and corresponding mechanisms are discussed.

13.
ACS Appl Mater Interfaces ; 15(4): 5577-5589, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36651633

RESUMEN

Through molecule self-assembly and subsequent surface functionalization, novel uranium adsorbent AO-OB hierarchical self-assembled polyimide microspheres (AO-OBHSPIMs) were obtained by introducing the amidoxime groups into hierarchical self-assembled polyimide microspheres for the efficient and selective recovery of uranium from wastewater. The results of Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), X-ray diffraction (XRD), and nitrogen adsorption-desorption isotherm showed that AO-OBHSPIMs were a semicrystalline polymer material with self-supporting hierarchical structure and low pore volume, and they were equipped with abundant amidoxime groups. Given the recognized selectivity of amidoxime groups and their hierarchical structure, AO-OBHSPIMs exhibited excellent selectivity to uranyl ions. Moreover, AO-OBHSPIMs exhibited good stability and recyclability and remarkable removal percentage within low-concentration solution (99.4%) and simulated uranium-containing wastewater (97.3%). AO-OBHSPIMs could be applied to fixed-bed column adsorption due to their large particle size and self-supporting hierarchical structure that can facilitate water flow. The in-depth discussion of the adsorption mechanism showed that the adsorption mainly depended on the combined action of electrostatic interactions and complexation, and the adsorption process was a spontaneous endothermic monolayer adsorption. In summary, AO-OBHSPIMs exhibited good application prospects in uranium-containing wastewater remediation.

14.
Environ Sci Pollut Res Int ; 30(23): 64771-64777, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37099110

RESUMEN

Herein, we report a new strategy for the rapid removal of uranium-containing contaminants from metal surfaces, and it relies on decontaminants made of NaOH-based molten salts. The addition of Na2CO3 and NaCl to NaOH exhibited superior decontamination performance, with a decontamination rate of 93.8% within 12 min, outdoing the performance of the single NaOH molten salt. The experimental results demonstrated that the synergistic effects between CO32- and Cl- promoted the corrosion efficiency of the molten salt on the substrate, which accelerated the decontamination rate. Additionally, benefiting from the optimization of the experimental conditions by the response surface method (RSM), the decontamination efficiency was improved to 94.9%. Notably, it also showed remarkable results in the decontamination of specimens containing different uranium oxides at low and high levels of radioactivity. This technology is promising for broadening the path in rapid decontamination of radioactive contaminants on metal surfaces.


Asunto(s)
Residuos Radiactivos , Uranio , Acero Inoxidable , Sales (Química) , Uranio/análisis , Hidróxido de Sodio , Descontaminación/métodos , Cloruro de Sodio
15.
RSC Adv ; 13(27): 18347-18362, 2023 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-37342806

RESUMEN

With the development of nuclear energy, spent cationic exchange resins after purification of radioactive wastewater must be treated. Molten-salt oxidation (MSO) can minimize the disposal content of resins and capture SO2. In this work, the decomposition of uranium-containing resins in carbonate molten salt in N2 and air atmospheres was investigated. Compared to N2 atmosphere, the content of SO2 released from the decomposition of resins was relatively low at 386-454 °C in an air atmosphere. The SEM morphology indicated that the presence of air facilitated the decomposition of the resin cross-linked structure. The decomposition efficiency of resins in an air atmosphere was 82.6% at 800 °C. The XRD analysis revealed that uranium compounds had the reaction paths of UO3 → UO2.92 → U3O8 and UO3 → K2U2O7 → K2UO4 in the carbonate melt, and sulfur elements in resins were fixed in the form of K3Na(SO4)2. The XPS result illustrated that peroxide and superoxide ions accelerated the conversion of sulfone sulfur to thiophene sulfur and further oxidized to CO2 and SO2. Besides, the ion bond formed by uranyl ions on the sulfonic acid group was decomposed at high temperature. Finally, the decomposition of uranium-containing resins in the carbonate melt in an air atmosphere was explained. This study provided more theoretical guidance and technical support for the industrial treatment of uranium-containing resins.

16.
Chemosphere ; 331: 138837, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37146777

RESUMEN

Cationic exchange resins (CERs) were applied for purification and clarifying process of radioactive wastewater in nuclear industry, which was a kind of sulfur-containing organic material. Molten-salt oxidation (MSO) method can be applied for the treatment of spent CERs and the absorption of acid gas (such as SO2). The experiments about the molten salt destruction of the original resin and Cu ions doped resin were conducted. The transformation of organic sulfur in Cu ions doped resin was investigated. Compared with the original resin, the content of tail gas (such as CH4, C2H4, H2S and SO2) released from the decomposition of Cu ions doped resin was relatively high at 323-657 °C. Sulfur elements in the form of sulfates and copper sulfides were fixed in spent salt through XRD analysis. The XPS result revealed that the portion of functional sulfonic acid groups (-SO3H) in Cu ions doped resin was converted into sulfonyl bridges (-SO2-) at 325 °C. With the enhancement of temperature, sulfonyl bridges (-SO2-) were further decomposed to sulfoxides sulfur (-SO-) and organic sulfide sulfur. The destruction of thiophenic sulfur to H2S and CH4 was prompted by copper ions in copper sulfide. Sulfoxide were oxidized to the sulfone sulfur in molten salt. Sulfones sulfur consumed by reduction of Cu ions at 720 °C was more than it produced by oxidation of sulfoxide through XPS analysis, and the relative proportion of sulfone sulfur was 16.51%.


Asunto(s)
Resinas de Intercambio de Catión , Cobre , Azufre , Sulfuros , Cloruro de Sodio , Sulfonas , Sodio , Litio
17.
Environ Sci Pollut Res Int ; 30(6): 16729-16740, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36525196

RESUMEN

Molten salt oxidation (MSO) is an advanced method for waste resins treatment; nevertheless, the research about gas product variations of resins under different stoichiometric air feed coefficient (α) is rare. The optimal working condition of hazardous waste disposal is obtained through thermodynamic equilibrium calculation, and the method to improve the treatment efficiency is found to guide the optimization of the actual experiment. In this paper, Fact Sage was used to calculate the oxidation products of cation exchange resins (CERs) at different temperatures and α, focusing on the similarities and differences through the contents of CO, CH4, CO2, and SO2 during the oxidation of CERs, the MSO of CERs, and the theoretical calculation. The results indicated that the gas products of the calculation and reality of the oxidation process of CERs are quite different, while the CO contents of CERs during MSO are close to the calculated values. The main reason for this consequence is that in the oxidation process of CERs, the S in the sulfonic acid group will form thermally stable C-S with the styrene-divinylbenzene skeleton. Moreover, the introduction of carbonate can promote the destruction of C-S and absorb SO2 as sulfate, weakening the influence of C-S on the oxidation products of CERs. The gas chromatograph results indicated that the SO2 content is reduced from 0.66% in the process of CERs oxidation to 0.28% in MSO of CERs. When 1.25 times stoichiometric air feed coefficient is fed, the sulfate content in the carbonate is the highest at 900 °C, which is 23.4%.


Asunto(s)
Resinas de Intercambio de Catión , Gases , Cloruro de Sodio , Cloruro de Sodio Dietético , Carbonatos , Oxígeno
18.
Sci Total Environ ; 836: 155609, 2022 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-35504391

RESUMEN

Electrochemical techniques are considered promising applications to immobilize uranium in alkaline wastewater in order to prevent its migration into groundwater and soil. In this work, the results of electrochemical and Atomic Force Microscope (AFM) demonstrate a successful immobilization of uranyl in the carbonate system by U(VI)-U(V), U(V)-U(IV) reduction, and U(V) disproportionation reactions. The results indicated that the electrochemical fixation rate in alkaline system could reach more than 99%. The valence state of uranium is the key factor affecting its migration in the working system. Where, the analysis of the immobilized samples by X-ray photoelectron spectroscopy (XPS) revealed that pHs, current density, and the presence of foreign cations significantly affect the valence state of uranium in the immobilized samples. Under same conditions, the reduction reactions of U(VI)-U(V) and U(V)-U(IV) occurred easily. Where, at pH higher than 3.4 or the current density in the range of 0.5-20 mA/cm2, high content of U(V) and U(IV) in the immobilized products was obtained. Other conditions favored the occurrence of the electrolytic water reaction, and the immobilized samples were dominated by U(VI). It was found that the temperature showed the greatest effect on the electrochemical immobilization rate. Where, the electrochemical immobilization rate increased by about 1.8 times when the ambient temperature increased from 293.15 to 328.15 K. This study provides a new idea for the immobilization of uranium in alkaline wastewater and demonstrates the feasibility of electrochemical immobilization of uranium in alkaline systems.


Asunto(s)
Agua Subterránea , Uranio , Espectroscopía de Fotoelectrones , Suelo , Uranio/análisis , Aguas Residuales/análisis
19.
J Hazard Mater ; 422: 126872, 2022 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-34399212

RESUMEN

Herein, a dual-function Zeolitic Imidazole Frameworks (ZIFs) ZIF-90 grafted with malononitrile by Knoevenagel reaction and following with an amidoximation reaction to form an efficient U (VI) adsorbent (ZIF-90-AO). The strong chelation power of amidoxime groups (AO) with uranium and ZIF-90's mesoporous structure afforded ZIF-90-AO high maximum uranium adsorption capacity of 468.3 mg/g (pH = 5). In addition, the factors affecting uranium adsorption process were investigated by a batch of adsorption tests under different adsorption conditions. ZIF-90-AO displayed good selectivity to UO22+ in the solution containing multiple co-existing ions and good regeneration property. More importantly, ZIF-90-AO showed excellent antimicrobial property against both E. coli and S. aureus. Therefore, ZIF-90-AO is a U-adsorbent with great application value for removing U (VI) from wastewater due to the high U (VI) adsorption capacity in weak acid condition and good anti-biofouling properties.


Asunto(s)
Uranio , Adsorción , Antibacterianos , Escherichia coli , Nitrilos , Oximas , Staphylococcus aureus , Uranio/análisis
20.
Dalton Trans ; 51(34): 12808-12811, 2022 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-35980190

RESUMEN

As the primary functional groups of amidoxime sorbents for uranium recovery from seawater, di(amidoxime) ligands can be cyclized in situ into different ligands in the presence of Cu(II)/Ni(II) at different pH values. Here we first found that a linear ligand glutardiamidoxime can be catalyzed into a cyclic ligand glutarimidedioxime by Ni(II) in acidic solution.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA