Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Interface Focus ; 7(1): 20160080, 2017 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-28163872

RESUMEN

With the goal of operating a biologically inspired robot autonomously outside of laboratory conditions, in this paper, we simulated wind disturbances in a laboratory setting and investigated the effects of gusts on the flight dynamics of a millimetre-scale flapping-wing robot. Simplified models describing the disturbance effects on the robot's dynamics are proposed, together with two disturbance rejection schemes capable of estimating and compensating for the disturbances. The proposed methods are experimentally verified. The results show that these strategies reduced the root-mean-square position errors by more than 50% when the robot was subject to 80 cm s-1 horizontal wind. The analysis of flight data suggests that modulation of wing kinematics to stabilize the flight in the presence of wind gusts may indirectly contribute an additional stabilizing effect, reducing the time-averaged aerodynamic drag experienced by the robot. A benchtop experiment was performed to provide further support for this observed phenomenon.

2.
Bioinspir Biomim ; 9(2): 025004, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24855052

RESUMEN

Challenges for the controlled flight of a robotic insect are due to the inherent instability of the system, complex fluid-structure interactions, and the general lack of a complete system model. In this paper, we propose theoretical models of the system based on the limited information available from previous work and a comprehensive flight controller. The modular flight controller is derived from Lyapunov function candidates with proven stability over a large region of attraction. Moreover, it comprises adaptive components that are capable of coping with uncertainties in the system that arise from manufacturing imperfections. We have demonstrated that the proposed methods enable the robot to achieve sustained hovering flights with relatively small errors compared to a non-adaptive approach. Simple lateral maneuvers and vertical takeoff and landing flights are also shown to illustrate the fidelity of the flight controller. The analysis suggests that the adaptive scheme is crucial in order to achieve millimeter-scale precision in flight control as observed in natural insect flight.


Asunto(s)
Aeronaves/instrumentación , Biomimética/instrumentación , Vuelo Animal/fisiología , Insectos/fisiología , Modelos Biológicos , Robótica/instrumentación , Alas de Animales/fisiología , Animales , Simulación por Computador , Diseño Asistido por Computadora , Diseño de Equipo , Análisis de Falla de Equipo , Retroalimentación Fisiológica/fisiología , Miniaturización , Oscilometría/instrumentación , Oscilometría/métodos
3.
J R Soc Interface ; 11(97): 20140281, 2014 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-24942846

RESUMEN

Scaling a flying robot down to the size of a fly or bee requires advances in manufacturing, sensing and control, and will provide insights into mechanisms used by their biological counterparts. Controlled flight at this scale has previously required external cameras to provide the feedback to regulate the continuous corrective manoeuvres necessary to keep the unstable robot from tumbling. One stabilization mechanism used by flying insects may be to sense the horizon or Sun using the ocelli, a set of three light sensors distinct from the compound eyes. Here, we present an ocelli-inspired visual sensor and use it to stabilize a fly-sized robot. We propose a feedback controller that applies torque in proportion to the angular velocity of the source of light estimated by the ocelli. We demonstrate theoretically and empirically that this is sufficient to stabilize the robot's upright orientation. This constitutes the first known use of onboard sensors at this scale. Dipteran flies use halteres to provide gyroscopic velocity feedback, but it is unknown how other insects such as honeybees stabilize flight without these sensory organs. Our results, using a vehicle of similar size and dynamics to the honeybee, suggest how the ocelli could serve this role.


Asunto(s)
Aeronaves/instrumentación , Biomimética/instrumentación , Ojo Compuesto de los Artrópodos/fisiología , Dípteros/fisiología , Retroalimentación Sensorial/fisiología , Vuelo Animal/fisiología , Robótica/instrumentación , Animales , Diseño de Equipo , Análisis de Falla de Equipo , Retroalimentación , Miniaturización , Orientación/fisiología , Torque , Transductores , Alas de Animales/fisiología
4.
Science ; 340(6132): 603-7, 2013 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-23641114

RESUMEN

Flies are among the most agile flying creatures on Earth. To mimic this aerial prowess in a similarly sized robot requires tiny, high-efficiency mechanical components that pose miniaturization challenges governed by force-scaling laws, suggesting unconventional solutions for propulsion, actuation, and manufacturing. To this end, we developed high-power-density piezoelectric flight muscles and a manufacturing methodology capable of rapidly prototyping articulated, flexure-based sub-millimeter mechanisms. We built an 80-milligram, insect-scale, flapping-wing robot modeled loosely on the morphology of flies. Using a modular approach to flight control that relies on limited information about the robot's dynamics, we demonstrated tethered but unconstrained stable hovering and basic controlled flight maneuvers. The result validates a sufficient suite of innovations for achieving artificial, insect-like flight.


Asunto(s)
Materiales Biomiméticos , Dípteros , Vuelo Animal , Robótica , Animales , Fenómenos Biomecánicos , Dípteros/anatomía & histología , Dípteros/fisiología , Drosophila/anatomía & histología , Drosophila/fisiología , Miniaturización , Músculos/fisiología , Alas de Animales/anatomía & histología , Alas de Animales/fisiología
5.
Bioinspir Biomim ; 6(3): 036009, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21878707

RESUMEN

In this paper, we present experimental results on altitude control of a flying microrobot. The problem is approached in two stages. In the first stage, system identification of two relevant subsystems composing the microrobot is performed, using a static flapping experimental setup. In the second stage, the information gathered through the static flapping experiments is employed to design the controller used in vertical flight. The design of the proposed controller relies on the idea of treating an exciting signal as a subsystem of the microrobot. The methods and results presented here are a key step toward achieving total autonomy of bio-inspired flying microrobots.


Asunto(s)
Aeronaves , Materiales Biomiméticos , Biomimética/instrumentación , Aves/fisiología , Vuelo Animal/fisiología , Robótica/instrumentación , Alas de Animales/fisiología , Animales , Biomimética/métodos , Simulación por Computador , Diseño Asistido por Computadora , Diseño de Equipo , Análisis de Falla de Equipo , Miniaturización , Modelos Biológicos , Estrés Mecánico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA