Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Acta Pharmacol Sin ; 42(12): 2004-2015, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34163022

RESUMEN

Ischemic preconditioning induced by brief periods of coronary occlusion and reperfusion protects the heart from a subsequent prolonged ischemic insult. In this study we investigated whether a short-term nonischemic stimulation of hypertrophy renders the heart resistant to subsequent ischemic injury. Male mice were subjected to transient transverse aortic constriction (TAC) for 3 days followed aortic debanding on D4 (T3D4), as well as ligation of the left coronary artery to induce myocardial infarction (MI). The TAC preconditioning mice showed markedly improved contractile function and significantly reduced myocardial fibrotic area and apoptosis following MI. We revealed that TAC preconditioning significantly reduced MI-induced oxidative stress, evidenced by increased NADPH/NADP ratio and GSH/GSSG ratio, as well as decreased mitochondrial ROS production. Furthermore, TAC preconditioning significantly increased the expression and activity of SIRT3 protein following MI. Cardiac-specific overexpression of SIRT3 gene through in vivo AAV-SIRT3 transfection partially mimicked the protective effects of TAC preconditioning, whereas genetic ablation of SIRT3 in mice blocked the protective effects of TAC preconditioning. Moreover, expression of an IDH2 mutant mimicking deacetylation (IDH2 K413R) in cardiomyocytes promoted myocardial IDH2 activation, quenched mitochondrial reactive oxygen species (ROS), and alleviated post-MI injury, whereas expression of an acetylation mimic (IDH2 K413Q) in cardiomyocytes inactivated IDH2, exacerbated mitochondrial ROS overload, and aggravated post-MI injury. In conclusion, this study identifies TAC preconditioning as a novel strategy for induction of an endogenous self-defensive and cardioprotective mechanism against cardiac injury. Therapeutic strategies targeting IDH2 are promising treatment approaches for cardiac ischemic injury.


Asunto(s)
Precondicionamiento Isquémico Miocárdico , Isocitrato Deshidrogenasa/metabolismo , Infarto del Miocardio/prevención & control , Acetilación , Animales , Apoptosis/fisiología , Técnicas de Inactivación de Genes , Isocitrato Deshidrogenasa/genética , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Mitocondrias/metabolismo , Mutación , Infarto del Miocardio/metabolismo , Estrés Oxidativo/fisiología , Especies Reactivas de Oxígeno/metabolismo , Sirtuina 3/genética , Sirtuina 3/metabolismo
2.
Biochem Biophys Res Commun ; 518(1): 120-126, 2019 10 08.
Artículo en Inglés | MEDLINE | ID: mdl-31405565

RESUMEN

Type 2 diabetes (T2D) is characterized by lack of insulin, insulin resistance and high blood sugar. However, the underlying mechanisms of insulin resistance during T2D development remains unclear. As the most common mRNAs modification, N6-Methyladenosine (m6A) is involved in many of pathological processes in aging disease. However, it remains unclear whether m6A is involved in T2D development and what is the regulatory mechanism. This study is aimed to illustrate the roles of m6A and its methyltransferase METTL3 in the regulation of blood glucose homeostasis and insulin sensitivity. The results showed that m6A methylated RNA level and its N6-methyladenosine methylase METTL3 were consistently up-regulated in the liver tissues from patients with T2D. Moreover, both m6A methylated RNA and METTL3 levels showed positive correlation with HOMA-IR and negative correlation with HOMA-ß. The m6A methylated RNA and METTL3 levels were also up-regulated in mouse with 16 weeks high-fat diet (HFD), compared with mice fed a standard chow diet (CD). Hepatocyte-specific knockout of METTL3 in mice fed a HFD improved insulin sensitivity and decreased fatty acid synthesis. Furthermore, mechanism analysis demonstrates that METTL3 silence decreased the m6A methylated and total mRNA level of Fatty acid synthase (Fasn), subsequently inhibited fatty acid metabolism. Adeno-associated virus mediated Fasn overexpression in METTL3 knockout mice abrogates the improved insulin sensitivity and decreased fatty acid synthesis. Collectively, these results reveal that RNA N6-methyladenosine methylase METTL3 inhibits hepatic insulin sensitivity via N6-methylation of Fasn mRNA and promoting fatty acid metabolism.


Asunto(s)
Adenosina/análogos & derivados , Acido Graso Sintasa Tipo I/metabolismo , Ácidos Grasos/metabolismo , Resistencia a la Insulina , Hígado/metabolismo , Metiltransferasas/metabolismo , Adenosina/metabolismo , Animales , Dependovirus/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Modelos Animales de Enfermedad , Eliminación de Gen , Glucosa/metabolismo , Hepatocitos/metabolismo , Homeostasis , Humanos , Metilación , Ratones Endogámicos C57BL , Ratones Noqueados , Obesidad/genética , Obesidad/patología , ARN Mensajero/genética , ARN Mensajero/metabolismo
3.
J Cell Mol Med ; 22(3): 1708-1719, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29314656

RESUMEN

Pathological cardiac hypertrophy aggravated myocardial infarction and is causally related to autophagy dysfunction and increased oxidative stress. Rapamycin is an inhibitor of serine/threonine kinase mammalian target of rapamycin (mTOR) involved in the regulation of autophagy as well as oxidative/nitrative stress. Here, we demonstrated that rapamycin ameliorates myocardial ischaemia reperfusion injury by rescuing the defective cytoprotective mechanisms in hypertrophic heart. Our results showed that chronic rapamycin treatment markedly reduced the phosphorylated mTOR and ribosomal protein S6 expression, but not Akt in both normal and aortic-banded mice. Moreover, chronic rapamycin treatment significantly mitigated TAC-induced autophagy dysfunction demonstrated by prompted Beclin-1 activation, elevated LC3-II/LC3-I ratio and increased autophagosome abundance. Most importantly, we found that MI/R-induced myocardial injury was markedly reduced by rapamycin treatment manifested by the inhibition of myocardial apoptosis, the reduction of myocardial infarct size and the improvement of cardiac function in hypertrophic heart. Mechanically, rapamycin reduced the MI/R-induced iNOS/gp91phox protein expression and decreased the generation of NO and superoxide, as well as the cytotoxic peroxynitrite. Moreover, rapamycin significantly mitigated MI/R-induced endoplasmic reticulum stress and mitochondrial impairment demonstrated by reduced Caspase-12 activity, inhibited CHOP activation, decreased cytoplasmic Cyto-C release and preserved intact mitochondria. In addition, inhibition of mTOR also enhanced the phosphorylated ERK and eNOS, and inactivated GSK3ß, a pivotal downstream target of Akt and ERK signallings. Taken together, these results suggest that mTOR signalling protects against MI/R injury through autophagy induction and ERK-mediated antioxidative and anti-nitrative stress in mice with hypertrophic myocardium.


Asunto(s)
Cardiomegalia/complicaciones , Daño por Reperfusión Miocárdica/prevención & control , Sirolimus/farmacología , Serina-Treonina Quinasas TOR/antagonistas & inhibidores , Animales , Autofagia/efectos de los fármacos , Inmunosupresores/farmacología , Masculino , Ratones , Daño por Reperfusión Miocárdica/complicaciones , Daño por Reperfusión Miocárdica/metabolismo , Fosforilación/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Serina-Treonina Quinasas TOR/metabolismo
4.
Clin Sci (Lond) ; 132(1): 111-125, 2018 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-29212786

RESUMEN

Diabetes mellitus is a significant global public health problem depicting a rising prevalence worldwide. As a serious complication of diabetes, diabetes-associated cognitive decline is attracting increasing attention. However, the underlying mechanisms are yet to be fully determined. Both endoplasmic reticulum (ER) stress and autophagy have been reported to modulate neuronal survival and death and be associated with several neurodegenerative diseases. Here, a streptozotocin-induced diabetic mouse model and primary cultured mouse hippocampal neurons were employed to investigate the possible role of ER stress and autophagy in diabetes-induced neuronal apoptosis and cognitive impairments, and further explore the potential molecular mechanisms. ER stress markers GRP78 and CHOP were both enhanced in diabetic mice, as was phosphorylation of PERK, IRE1α, and JNK. In addition, the results indicated an elevated level of autophagy in diabetic mice, as demonstrated by up-regulated expressions of autophagy markers LC3-II, beclin 1 and down-regulated level of p62, and increased formation of autophagic vacuoles and LC3-II aggregates. Meanwhile, we found that these effects could be abolished by ER stress inhibitor 4-phenylbutyrate or JNK inhibitor SP600125 in vitro. Furthermore, neuronal apoptosis of diabetic mice was attenuated by pretreatment with 4-phenylbutyrate, while aggravated by application of inhibitor of autophagy bafilomycin A1 in vitro. These results suggest that ER stress pathway may be involved in diabetes-mediated neurotoxicity and promote the following cognitive impairments. More important, autophagy was induced by diabetes possibly through ER stress-mediated JNK pathway, which may protect neurons against ER stress-associated cell damages.


Asunto(s)
Apoptosis/fisiología , Autofagia/fisiología , Disfunción Cognitiva/fisiopatología , Diabetes Mellitus Experimental/fisiopatología , Estrés del Retículo Endoplásmico/fisiología , Neuronas/fisiología , Animales , Autofagia/efectos de los fármacos , Células Cultivadas , Diabetes Mellitus Experimental/metabolismo , Chaperón BiP del Retículo Endoplásmico , Estrés del Retículo Endoplásmico/efectos de los fármacos , Proteínas de Choque Térmico/metabolismo , Hipocampo/citología , Masculino , Ratones , Actividad Motora/fisiología , Neuronas/citología , Neuronas/ultraestructura , Fenilbutiratos/farmacología , Transducción de Señal/efectos de los fármacos , Factor de Transcripción CHOP/metabolismo
5.
Clin Sci (Lond) ; 132(1): 93-110, 2018 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-29175946

RESUMEN

Left ventricular hypertrophy (LVH) is causally related to increased morbidity and mortality following acute myocardial infarction (AMI) via still unknown mechanisms. Although rapamycin exerts cardioprotective effects against myocardial ischemia/reperfusion (MI/R) injury in normal animals, whether rapamycin-elicited cardioprotection is altered in the presence of LVH has yet to be determined. Pressure overload induced cardiac hypertrophied mice and sham-operated controls were exposed to AMI by coronary artery ligation, and treated with vehicle or rapamycin 10 min before reperfusion. Rapamycin produced marked cardioprotection in normal control mice, whereas pressure overload induced cardiac hypertrophied mice manifested enhanced myocardial injury, and was refractory to rapamycin-elicited cardioprotection evidenced by augmented infarct size, aggravated cardiomyocyte apoptosis, and worsening cardiac function. Rapamycin alleviated MI/R injury via ERK-dependent antioxidative pathways in normal mice, whereas cardiac hypertrophied mice manifested markedly exacerbated oxidative/nitrative stress after MI/R evidenced by the increased iNOS/gp91phox expression, superoxide production, total NO metabolites, and nitrotyrosine content. Moreover, scavenging superoxide or peroxynitrite by selective gp91phox assembly inhibitor gp91ds-tat or ONOO- scavenger EUK134 markedly ameliorated MI/R injury, as shown by reduced myocardial oxidative/nitrative stress, alleviated myocardial infarction, hindered cardiomyocyte apoptosis, and improved cardiac function in aortic-banded mice. However, no additional cardioprotective effects were achieved when we combined rapamycin and gp91ds-tat or EUK134 in ischemic/reperfused hearts with or without LVH. These results suggest that cardiac hypertrophy attenuated rapamycin-induced cardioprotection by increasing oxidative/nitrative stress and scavenging superoxide/peroxynitrite protects the hypertrophied heart from MI/R.


Asunto(s)
Hipertrofia Ventricular Izquierda/fisiopatología , Infarto del Miocardio/prevención & control , Daño por Reperfusión Miocárdica/fisiopatología , Estrés Oxidativo/fisiología , Sirolimus/farmacología , Animales , Cardiotónicos/farmacología , Resistencia a Medicamentos , Depuradores de Radicales Libres/farmacología , Masculino , Ratones Endogámicos C57BL , Infarto del Miocardio/metabolismo , Infarto del Miocardio/fisiopatología , Compuestos Organometálicos/farmacología , Estrés Oxidativo/efectos de los fármacos , Especies de Nitrógeno Reactivo/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Salicilatos/farmacología
6.
Acta Pharmacol Sin ; 37(3): 415-24, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26806301

RESUMEN

AIM: Leflunomide is an immunosuppressive agent marketed as a disease-modifying antirheumatic drug. But it causes severe side effects, including fatal hepatitis and liver failure. In this study we investigated the contributions of hepatic metabolism and transport of leflunomide and its major metabolite teriflunomide to leflunomide induced hepatotoxicity in vitro and in vivo. METHODS: The metabolism and toxicity of leflunomide and teriflunomide were evaluated in primary rat hepatocytes in vitro. Hepatic cytochrome P450 reductase null (HRN) mice were used to examine the PK profiling and hepatotoxicity of leflunomide in vivo. The expression and function of sodium/bile acid cotransporter (NTCP) were assessed in rat and human hepatocytes and NTCP-transfected HEK293 cells. After Male Sprague-Dawley (SD) rats were administered teriflunomide (1,6, 12 mg · kg(-1) · d(-1), ig) for 4 weeks, their blood samples were analyzed. RESULTS: A nonspecific CYPs inhibitor aminobenzotriazole (ABT, 1 mmol/L) decreased the IC50 value of leflunomide in rat hepatocytes from 409 to 216 µmol/L, whereas another nonspecific CYPs inhibitor proadifen (SKF, 30 µmol/L) increased the cellular accumulation of leflunomide to 3.68-fold at 4 h. After oral dosing (15 mg/kg), the plasma exposure (AUC0-t) of leflunomide increased to 3-fold in HRN mice compared with wild type mice. Administration of leflunomide (25 mg·kg(-1) · d(-1)) for 7 d significantly increased serum ALT and AST levels in HRN mice; when the dose was increased to 50 mg·kg(-1) · d(-1), all HRN mice died on d 6. Teriflunomide significantly decreased the expression of NTCP in human hepatocytes, as well as the function of NTCP in rat hepatocytes and NTCP-transfected HEK293 cells. Four-week administration of teriflunomide significantly increased serum total bilirubin and direct bilirubin levels in female rats, but not in male rats. CONCLUSION: Hepatic CYPs play a critical role in detoxification process of leflunomide, whereas the major metabolite teriflunomide suppresses the expression and function of NTCP, leading to potential cholestasis.


Asunto(s)
Antirreumáticos/toxicidad , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Sistema Enzimático del Citocromo P-450/metabolismo , Isoxazoles/toxicidad , Hígado/efectos de los fármacos , Hígado/patología , Transportadores de Anión Orgánico Sodio-Dependiente/metabolismo , Simportadores/metabolismo , Animales , Antirreumáticos/metabolismo , Antirreumáticos/farmacocinética , Células Cultivadas , Enfermedad Hepática Inducida por Sustancias y Drogas/patología , Crotonatos/metabolismo , Crotonatos/farmacocinética , Crotonatos/toxicidad , Inhibidores Enzimáticos del Citocromo P-450/farmacología , Femenino , Células HEK293 , Humanos , Hidroxibutiratos , Isoxazoles/metabolismo , Isoxazoles/farmacocinética , Leflunamida , Hígado/metabolismo , Masculino , Ratones Endogámicos C57BL , Nitrilos , Transportadores de Anión Orgánico Sodio-Dependiente/antagonistas & inhibidores , Ratas Sprague-Dawley , Simportadores/antagonistas & inhibidores , Toluidinas/metabolismo , Toluidinas/farmacocinética , Toluidinas/toxicidad
7.
Nutr J ; 15(1): 94, 2016 10 28.
Artículo en Inglés | MEDLINE | ID: mdl-27793207

RESUMEN

BACKGROUND: The association between serum selenium level and gestational diabetes mellitus (GDM) is controversial. The aim of our study was to systematically review available literature linking selenium to GDM for a comprehensive understanding of the relationship between serum selenium level and GDM in human. METHODS: PubMed, The Cochrane Library and Medline were searched for studies published up to August 2016. Manual searches of references of the relevant original studies were carried out. Pooled estimates were measured using the fixed or random effect model. Overall effect was reported in a standard mean difference (SMD). All data were analyzed with Review Manager 5.3 and Stata 12.0. RESULTS: Of 44 references reviewed, seven studies involving 569 patients met our inclusion criteria and contributed to meta-analysis. All the studies were used to evaluate the relationship between serum selenium level and GDM. Selenium level was significantly lower in women with GDM than those without GDM (SMD = -1.17; 95 % CI: -1.98 to -0.35, P = 0.005). Subgroup analysis showed that such trend was consistent within the non-Caucasian population (Asia: SMD = -2.82; 95 % CI: -5.21 to -0.43, P = 0.02; Africa: SMD = -0.56; 95 % CI: -1.07 to -0.05, P = 0.03) and in the third trimester (SMD = -1.78; 95 % CI: -3.04 to -0.52, P = 0.006), but not within the Caucasian population (Europe: SMD = -0.6; 95 % CI: -1.98 to 0.78, P = 0.39) or in the second trimester (SMD = -0.68; 95 % CI: -1.6 to 0.25, P = 0.15). CONCLUSIONS: The available evidences suggested that serum selenium level was lower in women with GDM than those with normal glucose tolerance, especially within the non-Caucasian population and in the third trimester. However, well-designed prospective studies are needed to understand dynamic associations between selenium status and GDM risk.


Asunto(s)
Diabetes Gestacional/sangre , Selenio/sangre , Adulto , Diabetes Gestacional/epidemiología , Femenino , Humanos , Embarazo , Tercer Trimestre del Embarazo , Grupos Raciales
8.
Mar Drugs ; 14(12)2016 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-27999379

RESUMEN

Doxorubicin (DOX) is a highly potent chemotherapeutic agent, but its usage is limited by dose-dependent cardiotoxicity. DOX-induced cardiotoxicity involves increased oxidative stress and activated endoplasmic reticulum-mediated apoptosis. Alginate oligosaccharide (AOS) is a non-immunogenic, non-toxic and biodegradable polymer, with anti-oxidative, anti-inflammatory and anti-endoplasmic reticulum stress properties. The present study examined whether AOS pretreatment could protect against acute DOX cardiotoxicity, and the underlying mechanisms focused on oxidative stress and endoplasmic reticulum-mediated apoptosis. We found that AOS pretreatment markedly increased the survival rate of mice insulted with DOX, improved DOX-induced cardiac dysfunction and attenuated DOX-induced myocardial apoptosis. AOS pretreatment mitigated DOX-induced cardiac oxidative stress, as shown by the decreased expressions of gp91 (phox) and 4-hydroxynonenal (4-HNE). Moreover, AOS pretreatment significantly decreased the expression of Caspase-12, C/EBP homologous protein (CHOP) (markers for endoplasmic reticulum-mediated apoptosis) and Bax (a downstream molecule of CHOP), while up-regulating the expression of anti-apoptotic protein Bcl-2. Taken together, these findings identify AOS as a potent compound that prevents acute DOX cardiotoxicity, at least in part, by suppression of oxidative stress and endoplasmic reticulum-mediated apoptosis.


Asunto(s)
Apoptosis/efectos de los fármacos , Cardiotoxicidad/prevención & control , Doxorrubicina/farmacología , Oligosacáridos/farmacología , Aldehídos/metabolismo , Alginatos , Animales , Proteínas Reguladoras de la Apoptosis/metabolismo , Biomarcadores , Cardiotoxicidad/metabolismo , Cardiotoxicidad/patología , Caspasa 12/metabolismo , Cromatografía Líquida de Alta Presión , Doxorrubicina/efectos adversos , Doxorrubicina/química , Doxorrubicina/metabolismo , Retículo Endoplásmico/efectos de los fármacos , Ácido Glucurónico , Ácidos Hexurónicos , Ratones , Oligosacáridos/química , Oligosacáridos/metabolismo , Estrés Oxidativo/efectos de los fármacos , Receptores Inmunológicos/metabolismo , Espectrometría de Masa por Ionización de Electrospray , Factor de Transcripción CHOP/metabolismo
9.
J Surg Res ; 194(1): 255-61, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25450597

RESUMEN

BACKGROUND: Postoperative cognitive dysfunction is increasingly recognized as an important clinical syndrome. Inhalation anesthetics are commonly used during surgery, and it has been proposed that inhalation anesthetics impair cognitive function. However, there are few clinical interventions and treatments available to prevent this disorder. GTS-21, a selective agonist of alpha 7 nicotinic acetylcholine receptor, has been indicated to exert neuroprotective effects in the experimental animal models of neurodegenerative diseases. Therefore, we hypothesized that pretreatment with GTS-21 attenuates isoflurane-induced cognitive decline in aged rats. METHODS: In the present study, 20-mo-old rats were administered GTS-21 or an equal volume of saline by intraperitoneal injection 30 min before exposure to isoflurane. Then the rats were exposed to 1.3% isoflurane for 4 h. Spatial learning and memory of the rats were assessed at 2 wk after isoflurane exposure. The expression levels of interleukin (IL)-1ß, IL-6, and tumor necrosis factor-α in the hippocampus and cerebral cortex were determined by enzyme-linked immunosorbent assay. Simultaneously, neuronal apoptosis in the hippocampus was also observed by terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) staining and Nissl staining. RESULTS: We found that exposure to isoflurane induces learning and memory deficits of old rats. IL-1ß in the hippocampus was increased at 4 h after isoflurane exposure. Isoflurane also increased neuroapoptosis in the hippocampus and decreased neuronal density in the CA1 region. And GTS-21 pretreatment effectively alleviated these changes. CONCLUSIONS: The study demonstrated that pretreatment with α7 nicotinic acetylcholine receptor agonist GTS-21 attenuates isoflurane-induced learning and memory impairment in aged rats.


Asunto(s)
Anestésicos por Inhalación/toxicidad , Compuestos de Bencilideno/farmacología , Trastornos del Conocimiento/tratamiento farmacológico , Isoflurano/toxicidad , Agonistas Nicotínicos/farmacología , Piridinas/farmacología , Animales , Apoptosis/efectos de los fármacos , Trastornos del Conocimiento/inducido químicamente , Hipocampo/química , Hipocampo/efectos de los fármacos , Interleucina-1beta/análisis , Masculino , Ratas , Ratas Sprague-Dawley
10.
Xenobiotica ; 45(12): 1138-46, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26068524

RESUMEN

1. The purpose of this study was to investigate the mechanism of hepatic uptake of berberine. Berberine accumulation in hepatocytes was found to be highly dependent on active uptake, which could not be explained by liver organic cation transporter (OCT) alone. 2. Our studies indicated that berberine uptake was significantly suppressed by rifampicin, cyclosporine A and glycyrrhizic acid, which act as specific inhibitors of different Oatp isoforms (Oatp1a1, Oatp1a4 and Oatp1b2) in rat hepatocytes. The combination of OCT and OATP inhibitors further reduced berberine accumulation in both rat and human hepatocytes. The uptake of berberine could be increased in human HEK293-OATP1B3 but not in OATP1B1-transfected HEK 293 cells. 3. Rifampicin could reduce the berberine liver extraction ratio (ER) and double its concentration in the effluent in isolated rat livers. Further in vivo study indicated that berberine plasma exposure could be significantly increased by co-administration of the OATP inhibitor rifampicin or the substrate rosuvastatin. 4. In conclusion, this study demonstrated that both OCT and OATP contribute to the accumulation of berberine in the liver. OATPs may have important roles in berberine liver disposition and potential clinically relevant drug--drug interactions.


Asunto(s)
Berberina/farmacocinética , Hígado/metabolismo , Transportadores de Anión Orgánico/metabolismo , Animales , Expresión Génica/efectos de los fármacos , Células HEK293 , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Humanos , Técnicas In Vitro , Hígado/efectos de los fármacos , Masculino , Transportadores de Anión Orgánico/antagonistas & inhibidores , Transportadores de Anión Orgánico/genética , Transportadores de Anión Orgánico Sodio-Independiente/antagonistas & inhibidores , Transportadores de Anión Orgánico Sodio-Independiente/genética , Transportadores de Anión Orgánico Sodio-Independiente/metabolismo , Cultivo Primario de Células , Ratas , Ratas Sprague-Dawley , Rifampin/farmacología , Miembro 1B3 de la Familia de los Transportadores de Solutos de Aniones Orgánicos
11.
Acta Pharmacol Sin ; 35(9): 1188-98, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25087997

RESUMEN

AIM: To investigate the mechanisms underlying the hepatotoxicity of timosaponin A3 (TA3), a steroidal saponin from Anemarrhena asphodeloides, in rats. METHODS: Male SD rats were administered TA3 (100 mg·kg(-1)·d(-1), po) for 14 d, and the blood and bile samples were collected after the final administration. The viability of a sandwich configuration of cultured rat hepatocytes (SCRHs) was assessed using WST-1. Accumulation and biliary excretion index (BEI) of d8-TCA in SCRHs were determined with LC-MS/MS. RT-PCR and Western blot were used to analyze the expression of relevant genes and proteins. ROS and ATP levels, and mitochondrial membrane potential (MMP) were measured. F-actin cytoskeletal integrity was assessed under confocal microscopy. RESULTS: TA3 administration in rats significantly elevated the total bile acid in serum, and decreased bile acid (BA) component concentrations in bile. TA3 inhibited the viability of the SCRHs with an IC50 value of 15.21±1.73 µmol/L. Treatment of the SCRHs with TA3 (1-10 µmol/L) for 2 and 24 h dose-dependently decreased the accumulation and BEI of d8-TCA. The TA3 treatment dose-dependently decreased the expression of BA transporters Ntcp, Bsep and Mrp2, and BA biosynthesis related Cyp7a1 in hepatocytes. Furthermore, the TA3 treatment dose-dependently increased ROS generation and HO-1 expression, decreased the ATP level and MMP, and disrupted F-actin in the SCRHs. NAC (5 mmol/L) significantly ameliorated TA3-induced effects in the SCRHs, whereas mangiferin (10-200 µg/mL) almost blocked TA3-induced ROS generation. CONCLUSION: TA3 triggers liver injury through inducing ROS generation and suppressing the expression of BA transporters. Mangiferin, an active component in Anemarrhena, may protect hepatocytes from TA3-induced hepatotoxicity.


Asunto(s)
Ácidos y Sales Biliares/metabolismo , Proteínas Portadoras/metabolismo , Regulación hacia Abajo/efectos de los fármacos , Hepatocitos/efectos de los fármacos , Hígado/efectos de los fármacos , Glicoproteínas de Membrana/metabolismo , Estrés Oxidativo/efectos de los fármacos , Saponinas/farmacología , Esteroides/farmacología , Animales , Células Cultivadas , Hepatocitos/metabolismo , Hígado/metabolismo , Masculino , Ratas , Ratas Sprague-Dawley
15.
Zhejiang Da Xue Xue Bao Yi Xue Ban ; 41(5): 553-8, 2012 Sep.
Artículo en Zh | MEDLINE | ID: mdl-23086649

RESUMEN

OBJECTIVE: To investigate whether inhaled sevoflurane is capable of producing delayed cardioprotection effect in rats and its underlying mechanisms. METHODS: Male Sprague-Dawley rats inhaled 1.0 minimum alveolar concentration (MAC) sevoflurane, 1.5 MAC sevoflurane,or O(2) for 1 h. After 24 h and 48 h the left coronary artery of rats was occluded for 30 min,followed by 120 min of reperfusion. Hemodynamics was continuously recorded and myocardial infarct size was determined by Evans blue and triphenyltetrazolium chloride staining. The expression of nitric oxide synthase (NOS) was assessed by immunoblotting. RESULTS: 1.0 MAC sevoflurane and 1.5 MAC sevoflurane improved cardiac pump function after reperfusion and reduced myocardial infarct size with the increased iNOS expression (P<0.05). However,the expression of eNOS and p-eNOS was not affected (P>0.05). A selective iNOS inhibitor 1400 W abolished the cardioprotection effect induced by inhalation of 1.0 MAC sevoflurane for 24 h. CONCLUSION: Sevoflurane produces delayed cardioprotection through the up-regulation of iNOS expression.


Asunto(s)
Precondicionamiento Isquémico Miocárdico , Éteres Metílicos/farmacología , Daño por Reperfusión Miocárdica/prevención & control , Óxido Nítrico Sintasa de Tipo II/metabolismo , Anestésicos por Inhalación/farmacología , Animales , Modelos Animales de Enfermedad , Masculino , Daño por Reperfusión Miocárdica/enzimología , Daño por Reperfusión Miocárdica/patología , Miocardio/enzimología , Miocardio/patología , Ratas , Ratas Sprague-Dawley , Sevoflurano , Regulación hacia Arriba/efectos de los fármacos
16.
Front Cardiovasc Med ; 8: 641272, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33969009

RESUMEN

The transverse aortic constriction (TAC) model surgery is a widely used disease model to study pressure overload-induced cardiac hypertrophy and heart failure in mice. The severity of adverse cardiac remodeling of the TAC model is largely dependent on the degree of constriction around the aorta, and the phenotypes of TAC are also different in different mouse strains. Few studies focus on directly comparing phenotypes of the TAC model with different degrees of constriction around the aorta, and no study compares the difference in C57BL/6N mice. In the present study, C57BL/6N mice aged 10 weeks were subjected to sham, 25G TAC, 26G TAC, and 27G TAC surgery for 4 weeks. We then analyzed the different phenotypes induced by 25G TAC, 26G TAC, and 27G TAC in c57BL/6N mice in terms of pressure gradient, cardiac hypertrophy, cardiac function, heart failure situation, survival condition, and cardiac fibrosis. All C57BL/6N mice subjected to TAC surgery developed significantly hypertrophy. Mice subjected to 27G TAC had severe cardiac dysfunction, severe cardiac fibrosis, and exhibited characteristics of heart failure at 4 weeks post-TAC. Compared with 27G TAC mice, 26G TAC mice showed a much milder response in cardiac dysfunction and cardiac fibrosis compared to 27G TAC, and a very small fraction of the 26G TAC group exhibited characteristics of heart failure. There was no obvious cardiac dysfunction, cardiac fibrosis, and characteristics of heart failure observed in 25G TAC mice. Based on our results, we conclude that the 25G TAC, 26G TAC, and 27G TAC induced distinct phenotypes in C57BL/6N mice.

17.
Redox Biol ; 43: 101960, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33910156

RESUMEN

Brief episodes of ischaemia and reperfusion render the heart resistant to subsequent prolonged ischaemic insult, termed ischaemic preconditioning. Here, we hypothesized that transient non-ischaemic stress by hypertrophic stimulation would induce endogenous cardioprotective signalling and enhance cardiac resistance to subsequent ischaemic damage. Transient transverse aortic constriction (TAC) or Ang-Ⅱ treatment was performed for 3-7 days in male mice and then withdrawn for several days by either aortic debanding or discontinuing Ang-Ⅱ treatment, followed by subsequent exposure to regional myocardial ischaemia by in situ coronary artery ligation. Following ischaemia/reperfusion (I/R) injury, myocardial infarct size and apoptosis were markedly reduced and contractile function was significantly improved in the TAC preconditioning group compared with that in the control group. Similar results were observed in mice receiving Ang-Ⅱ infusion. Mechanistically, TAC preconditioning enhanced ALDH2 activity, promoted AMPK activation and improved mitochondrial energy metabolism by increasing myocardial OXPHOS complex expression, elevating the mitochondrial ATP content and improving viable myocardium glucose uptake. Moreover, TAC preconditioning significantly mitigated I/R-induced myocardial iNOS/gp91phox activation, inhibited endoplasmic reticulum stress and ameliorated mitochondrial impairment. Using a pharmacological approach to inhibit AMPK signalling in the presence or absence of preconditioning, we demonstrated AMPK-dependent protective mechanisms of TAC preconditioning against I/R injury. Furthermore, treatment with adenovirus-encoded ALDH2 partially emulated the actions of hypertrophic preconditioning, as evidenced by improved mitochondrial metabolism, inhibited oxidative stress-induced mitochondrial damage and attenuated cell death through an AMPK-dependent mechanism, whereas genetic ablation of ALDH2 abrogated the aforementioned actions of TAC preconditioning. The present study demonstrates that preconditioning with hypertrophic stress protects the heart from I/R injury via mechanisms that improve mitochondrial metabolism, reduce oxidative/nitrative stress and inhibit apoptosis. ALDH2 is obligatorily required for the development of cardiac hypertrophic preconditioning and acts as the mediator of this process.


Asunto(s)
Precondicionamiento Isquémico Miocárdico , Infarto del Miocardio , Daño por Reperfusión Miocárdica , Aldehído Deshidrogenasa Mitocondrial , Animales , Masculino , Ratones , Mitocondrias Cardíacas , Miocardio
18.
Cell Prolif ; 54(7): e13051, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33973685

RESUMEN

BACKGROUND: Ischaemic preconditioning elicited by brief periods of coronary occlusion and reperfusion protects the heart from a subsequent prolonged ischaemic insult. Here, we test the hypothesis that short-term non-ischaemic stimulation of hypertrophy renders the heart resistant to subsequent ischaemic injury. METHODS AND RESULTS: Transient transverse aortic constriction (TAC) was performed for 3 days in mice and then withdrawn for 4 days by aortic debanding, followed by subsequent exposure to myocardial ischaemia-reperfusion (I/R) injury. Following I/R injury, myocardial infarct size and apoptosis were significantly decreased, and cardiac dysfunction was markedly improved in the TAC preconditioning group compared with the control group. Mechanistically, TAC preconditioning markedly suppressed I/R-induced autophagy and preserved autophagic flux by deacetylating SOD2 via a SIRT3-dependent mechanism. Moreover, treatment with an adenovirus encoding SIRT3 partially mimicked the effects of hypertrophic preconditioning, whereas genetic ablation of SIRT3 in mice blocked the cardioprotective effects of hypertrophic preconditioning. Furthermore, in vivo lentiviral-mediated knockdown of Beclin 1 in the myocardium ameliorated the I/R-induced impairment of autophagic flux and was associated with a reduction in cell death, whereas treatment with a lentivirus encoding Beclin 1 abolished the cardioprotective effect of TAC preconditioning. CONCLUSIONS: The present study identifies TAC preconditioning as a novel strategy for induction of an endogenous self-defensive and cardioprotective mechanism against cardiac injury. Specifically, TAC preconditioning reduced myocardial autophagic cell death in a SIRT3/SOD2 pathway-dependent manner.


Asunto(s)
Autofagia , Precondicionamiento Isquémico , Especies Reactivas de Oxígeno/metabolismo , Sirtuina 3/metabolismo , Superóxido Dismutasa/metabolismo , Animales , Apoptosis , Beclina-1/antagonistas & inhibidores , Beclina-1/genética , Beclina-1/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mitocondrias/metabolismo , Infarto del Miocardio/patología , Daño por Reperfusión Miocárdica/metabolismo , Daño por Reperfusión Miocárdica/patología , Daño por Reperfusión Miocárdica/prevención & control , Miocardio/metabolismo , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Sirtuina 3/deficiencia , Sirtuina 3/genética
20.
Neuropharmacology ; 131: 316-325, 2018 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-29305122

RESUMEN

Diabetic cognitive dysfunction has gained widespread attention for its deleterious impact on individuals with diabetes. However, few clinical interventions are available to prevent the disorder. The glucagon-like peptide-1 analog liraglutide exerts neuroprotective effects in several models of neurodegenerative diseases. We investigated the effect of liraglutide pretreatment on diabetes-induced cognitive decline and explored the underlying mechanisms in vivo and in vitro. Liraglutide pretreatment prevented diabetes-induced cognitive impairment as assessed by the Morris Water Maze test, and alleviated neuronal injuries and ultrastructural damage to synapses in the hippocampal CA1 region. Furthermore, liraglutide promoted autophagy as indicated by enhanced expression of the autophagy markers Microtubule-associated protein 1 light chain 3 (LC3)-II and Beclin 1, decreased expression of p62, and increased formation of autophagic vacuoles and LC3-II aggregates. In vitro, liraglutide treatment elevated phosphorylated (p)-AMP-activated protein kinase (AMPK) levels and reduced p-mammalian target of rapamycin (p-mTOR) expression. Additionally, the AMPK inhibitor Compound C exhibited an inhibitory effect on liraglutide-induced increased LC3-II expression and p62 degradation. Liraglutide exhibits neuroprotective effects against diabetes-induced hippocampal neuronal injuries and cognitive impairment by promoting autophagy via the AMPK/mTOR pathway.


Asunto(s)
Autofagia/efectos de los fármacos , Disfunción Cognitiva/tratamiento farmacológico , Diabetes Mellitus Experimental/tratamiento farmacológico , Hipoglucemiantes/farmacología , Liraglutida/farmacología , Nootrópicos/farmacología , Proteínas Quinasas Activadas por AMP/antagonistas & inhibidores , Proteínas Quinasas Activadas por AMP/metabolismo , Animales , Autofagia/fisiología , Región CA1 Hipocampal/efectos de los fármacos , Región CA1 Hipocampal/metabolismo , Región CA1 Hipocampal/patología , Células Cultivadas , Disfunción Cognitiva/etiología , Disfunción Cognitiva/metabolismo , Disfunción Cognitiva/patología , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patología , Diabetes Mellitus Experimental/psicología , Masculino , Aprendizaje por Laberinto/efectos de los fármacos , Aprendizaje por Laberinto/fisiología , Ratones Endogámicos C57BL , Distribución Aleatoria , Transducción de Señal/efectos de los fármacos , Sinapsis/efectos de los fármacos , Sinapsis/metabolismo , Sinapsis/patología , Serina-Treonina Quinasas TOR/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA