Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 756
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Circulation ; 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38682326

RESUMEN

BACKGROUND: Pulmonary arterial hypertension (PAH) is high blood pressure in the lungs that originates from structural changes in small resistance arteries. A defining feature of PAH is the inappropriate remodeling of pulmonary arteries (PA) leading to right ventricle failure and death. Although treatment of PAH has improved, the long-term prognosis for patients remains poor, and more effective targets are needed. METHODS: Gene expression was analyzed by microarray, RNA sequencing, quantitative polymerase chain reaction, Western blotting, and immunostaining of lung and isolated PA in multiple mouse and rat models of pulmonary hypertension (PH) and human PAH. PH was assessed by digital ultrasound, hemodynamic measurements, and morphometry. RESULTS: Microarray analysis of the transcriptome of hypertensive rat PA identified a novel candidate, PBK (PDZ-binding kinase), that was upregulated in multiple models and species including humans. PBK is a serine/threonine kinase with important roles in cell proliferation that is minimally expressed in normal tissues but significantly increased in highly proliferative tissues. PBK was robustly upregulated in the medial layer of PA, where it overlaps with markers of smooth muscle cells. Gain-of-function approaches show that active forms of PBK increase PA smooth muscle cell proliferation, whereas silencing PBK, dominant negative PBK, and pharmacological inhibitors of PBK all reduce proliferation. Pharmacological inhibitors of PBK were effective in PH reversal strategies in both mouse and rat models, providing translational significance. In a complementary genetic approach, PBK was knocked out in rats using CRISPR/Cas9 editing, and loss of PBK prevented the development of PH. We found that PBK bound to PRC1 (protein regulator of cytokinesis 1) in PA smooth muscle cells and that multiple genes involved in cytokinesis were upregulated in experimental models of PH and human PAH. Active PBK increased PRC1 phosphorylation and supported cytokinesis in PA smooth muscle cells, whereas silencing or dominant negative PBK reduced cytokinesis and the number of cells in the G2/M phase of the cell cycle. CONCLUSIONS: PBK is a newly described target for PAH that is upregulated in proliferating PA smooth muscle cells, where it contributes to proliferation through changes in cytokinesis and cell cycle dynamics to promote medial thickening, fibrosis, increased PA resistance, elevated right ventricular systolic pressure, right ventricular remodeling, and PH.

2.
Plant Cell ; 34(10): 3844-3859, 2022 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-35876813

RESUMEN

The Arabidopsis thaliana GSK3-like kinase, BRASSINOSTEROID-INSENSITIVE2 (BIN2) is a key negative regulator of brassinosteroid (BR) signaling and a hub for crosstalk with other signaling pathways. However, the mechanisms controlling BIN2 activity are not well understood. Here we performed a forward genetic screen for resistance to the plant-specific GSK3 inhibitor bikinin and discovered that a mutation in the ADENOSINE MONOPHOSPHATE DEAMINASE (AMPD)/EMBRYONIC FACTOR1 (FAC1) gene reduces the sensitivity of Arabidopsis seedlings to both bikinin and BRs. Further analyses revealed that AMPD modulates BIN2 activity by regulating its oligomerization in a hydrogen peroxide (H2O2)-dependent manner. Exogenous H2O2 induced the formation of BIN2 oligomers with a decreased kinase activity and an increased sensitivity to bikinin. By contrast, AMPD activity inhibition reduced the cytosolic reactive oxygen species (ROS) levels and the amount of BIN2 oligomers, correlating with the decreased sensitivity of Arabidopsis plants to bikinin and BRs. Furthermore, we showed that BIN2 phosphorylates AMPD to possibly alter its function. Our results uncover the existence of an H2O2 homeostasis-mediated regulation loop between AMPD and BIN2 that fine-tunes the BIN2 kinase activity to control plant growth and development.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Adenosina Monofosfato/metabolismo , Aminopiridinas , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Brasinoesteroides/metabolismo , Brasinoesteroides/farmacología , Regulación de la Expresión Génica de las Plantas , Glucógeno Sintasa Quinasa 3/genética , Peróxido de Hidrógeno/metabolismo , Peróxido de Hidrógeno/farmacología , Fosforilación , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Succinatos
3.
Proc Natl Acad Sci U S A ; 119(11): e2118220119, 2022 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-35254915

RESUMEN

SignificanceChemical genetics, which investigates biological processes using small molecules, is gaining interest in plant research. However, a major challenge is to uncover the mode of action of the small molecules. Here, we applied the cellular thermal shift assay coupled with mass spectrometry (CETSA MS) to intact Arabidopsis cells and showed that bikinin, the plant-specific glycogen synthase kinase 3 (GSK3) inhibitor, changed the thermal stability of some of its direct targets and putative GSK3-interacting proteins. In combination with phosphoproteomics, we also revealed that GSK3s phosphorylated the auxin carrier PIN-FORMED1 and regulated its polarity that is required for the vascular patterning in the leaf.


Asunto(s)
Brasinoesteroides/metabolismo , Ácidos Indolacéticos/metabolismo , Proteoma , Transducción de Señal , Aminopiridinas/metabolismo , Arabidopsis , Proteínas de Arabidopsis/metabolismo , Fosfoproteínas/metabolismo , Unión Proteica , Estabilidad Proteica , Proteómica/métodos , Succinatos/metabolismo
4.
J Physiol ; 602(11): 2649-2664, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38299894

RESUMEN

Evolution depends upon genetic variations that influence physiology. As defined in a genetic screen, phenotypic performance may be enhanced or degraded by such mutations. We set out to detect mutations that influence motor function, including motor learning. Thus, we tested the motor effects of 36,444 non-synonymous coding/splicing mutations induced in the germline of C57BL/6J mice with N-ethyl-N-nitrosourea by measuring changes in the performance of repetitive rotarod trials while blinded to genotype. Automated meiotic mapping was used to implicate individual mutations in causation. In total, 32,726 mice bearing all the variant alleles were screened. This was complemented with the simultaneous testing of 1408 normal mice for reference. In total, 16.3% of autosomal genes were thus rendered detectably hypomorphic or nullified by mutations in homozygosity and motor tested in at least three mice. This approach allowed us to identify superperformance mutations in Rif1, Tk1, Fan1 and Mn1. These genes are primarily related, among other less well-characterized functions, to nucleic acid biology. We also associated distinct motor learning patterns with groups of functionally related genes. These functional sets included, preferentially, histone H3 methyltransferase activity for mice that learnt at an accelerated rate relative to the remaining mutant mice. The results allow for an estimation of the fraction of mutations that can modify a behaviour influential for evolution such as locomotion. They may also enable, once the loci are further validated and the mechanisms elucidated, the harnessing of the activity of the newly identified genes to enhance motor ability or to counterbalance disability or disease. KEY POINTS: We studied the effect of chemically induced random mutations on mouse motor performance. An array of mutations influenced the rate of motor learning. DNA regulation genes predominated among these mutant loci. Several mutations in unsuspected genes led to superperformance. Assuming little-biased mutagenicity, the results allow for an estimation of the probability for any spontaneous mutation to influence a behaviour such as motor learning and ultimate performance.


Asunto(s)
Ratones Endogámicos C57BL , Mutación , Animales , Ratones , Masculino , Aprendizaje/fisiología , Genoma , Actividad Motora/fisiología , Actividad Motora/genética , Femenino
5.
Glia ; 72(3): 568-587, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38009296

RESUMEN

Radiation-induced damage to the blood-brain barrier (BBB) is the recognized pathological basis of radiation-induced brain injury (RBI), a side effect of head and neck cancer treatments. There is currently a lack of therapeutic approaches for RBI due to the ambiguity of its underlying mechanisms. Therefore, it is essential to identify these mechanisms in order to prevent RBI or provide early interventions. One crucial factor contributing to BBB disruption is the radiation-induced activation of astrocytes and oversecretion of vascular endothelial growth factor (VEGF). Mechanistically, the PI3K-AKT pathway can inhibit cellular autophagy, leading to pathological cell aggregation. Moreover, it acts as an upstream pathway of VEGF. In this study, we observed the upregulation of the PI3K-AKT pathway in irradiated cultured astrocytes through bioinformatics analysis, we then validated these findings in animal brains and in vitro astrocytes following radiation exposure. Additionally, we also found the inhibition of autophagy and the oversecretion of VEGF in irradiated astrocytes. By inhibiting the PI3K-AKT pathway or promoting cellular autophagy, we observed a significant amelioration of the inhibitory effect on autophagy, leading to reductions in VEGF oversecretion and BBB disruption. In conclusion, our study suggests that radiation can inhibit autophagy and promote VEGF oversecretion by upregulating the PI3K-AKT pathway in astrocytes. Blocking the PI3K pathway can alleviate both of these effects, thereby mitigating damage to the BBB in patients undergoing radiation treatment.


Asunto(s)
Astrocitos , Barrera Hematoencefálica , Animales , Humanos , Barrera Hematoencefálica/patología , Astrocitos/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Autofagia
6.
Small ; 20(24): e2308502, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38168120

RESUMEN

Core@shell catalyst composited of dual aluminosilicate zeolite can effectively regulate the distribution of acid sites to control hydrocarbon conversion process for the stable formation of target product. However, the diffusion restriction reduces the accessibility of inner active sites and affects synergy between core and shell. Herein, hollow ZSM-5 zeolite nanoreactor with inverse aluminum distribution and double shells are prepared and employed for methanol aromatization. It is demonstrated that the intershell cavity alleviated the steric hindrance from zeolites channel and provided more paths and pore entrance for guest molecule. Correspondingly, olefin intermediates generated from methanol over the external shell are easier to adsorb at internal acid sites for further reactions. Importantly, the diffusion of generated aromatic macromolecules to the external surface is also promoted, which slows down the formation of internal coke, and ensures the use of internal acid sites for aromatization. The aromatics selectivity of the nanoreactor remained at 8% after 154 h, while that of solid core@shell catalyst decreased to 2% after 75 h. This finding promises broader insight to improve internal active site utilization of core@shell catalyst at the diffusion level and can be great aid in the flexible design of multifunctional nanoreactors to enhance the relay efficiency.

7.
Biol Reprod ; 111(1): 227-241, 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-38590182

RESUMEN

Sertoli cells act as highly polarized testicular cells that nutritionally support multiple stages of germ cell development. However, the gene regulation network in Sertoli cells for modulating germ cell development has yet to be fully understood. In this study, we report that heterogeneous nuclear ribonucleoproteins C in Sertoli cells are essential for germ cell development and male fertility. Conditional knockout of heterogeneous nuclear ribonucleoprotein C in mouse Sertoli cells leads to aberrant Sertoli cells proliferation, disrupted cytoskeleton of Sertoli cells, and compromised blood-testis barrier function, resulting in loss of supportive cell function and, ultimately, defective spermiogenesis in mice. Further ribonucleic acid-sequencing analyses revealed these phenotypes are likely caused by the dysregulated genes in heterogeneous nuclear ribonucleoprotein C-deficient Sertoli cells related to cell adhesion, cell proliferation, and apoptotic process. In conclusion, this study demonstrates that heterogeneous nuclear ribonucleoprotein C plays a critical role in Sertoli cells for maintaining the function of Sertoli cells and sustaining steady-state spermatogenesis in mice.


Asunto(s)
Fertilidad , Ratones Noqueados , Células de Sertoli , Espermatogénesis , Animales , Masculino , Células de Sertoli/metabolismo , Células de Sertoli/fisiología , Espermatogénesis/fisiología , Espermatogénesis/genética , Ratones , Fertilidad/fisiología , Fertilidad/genética , Ribonucleoproteína Heterogénea-Nuclear Grupo C/metabolismo , Ribonucleoproteína Heterogénea-Nuclear Grupo C/genética , Barrera Hematotesticular/metabolismo
8.
J Transl Med ; 22(1): 254, 2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38459588

RESUMEN

BACKGROUND: Although hepatitis B virus (HBV) infection is a major risk factor for hepatic cancer, the majority of HBV carriers do not develop this lethal disease. Additional molecular alterations are thus implicated in the process of liver tumorigenesis. Since phosphatase and tensin homolog (PTEN) is decreased in approximately half of liver cancers, we investigated the significance of PTEN deficiency in HBV-related hepatocarcinogenesis. METHODS: HBV-positive human liver cancer tissues were checked for PTEN expression. Transgenic HBV, Alb-Cre and Ptenfl/fl mice were inter-crossed to generate WT, HBV, Pten-/- and HBV; Pten-/- mice. Immunoblotting, histological analysis and qRT-PCR were used to study these livers. Gp73-/- mice were then mated with HBV; Pten-/- mice to illustrate the role of hepatic tumor biomarker golgi membrane protein 73 (GP73)/ golgi membrane protein 1 (GOLM1) in hepatic oncogenesis. RESULTS: Pten deletion and HBV transgene synergistically aggravated liver injury, inflammation, fibrosis and development of mixed hepatocellular carcinoma (HCC) and intrahepatic cholangiocarcinoma (ICC). GP73 was augmented in HBV; Pten-/- livers. Knockout of GP73 blunted the synergistic effect of deficient Pten and transgenic HBV on liver injury, inflammation, fibrosis and cancer development. CONCLUSIONS: This mixed HCC-ICC mouse model mimics liver cancer patients harboring HBV infection and PTEN/AKT signaling pathway alteration. Targeting GP73 is a promising therapeutic strategy for cancer patients with HBV infection and PTEN alteration.


Asunto(s)
Carcinoma Hepatocelular , Hepatitis B , Neoplasias Hepáticas , Fosfohidrolasa PTEN , Animales , Humanos , Ratones , Carcinoma Hepatocelular/patología , Fibrosis , Hepatitis B/complicaciones , Virus de la Hepatitis B , Inflamación/patología , Hígado/patología , Neoplasias Hepáticas/patología , Proteínas de la Membrana/metabolismo , Ratones Noqueados , Fosfohidrolasa PTEN/metabolismo
9.
New Phytol ; 242(6): 2586-2603, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38523234

RESUMEN

Nicotianamine (NA) plays a crucial role in transporting metal ions, including iron (Fe), in plants; therefore, NICOTIANAMINE SYNTHASE (NAS) genes, which control NA synthesis, are tightly regulated at the transcriptional level. However, the transcriptional regulatory mechanisms of NAS genes require further investigations. In this study, we determined the role of bZIP44 in mediating plant response to Fe deficiency stress by conducting transformation experiments and assays. bZIP44 positively regulated the response of Arabidopsis to Fe deficiency stress by interacting with MYB10 and MYB72 to enhance their abilities to bind at NAS2 and NAS4 promoters, thereby increasing NAS2 and NAS4 transcriptional levels and promote NA synthesis. In summary, the transcription activities of bZIP44, MYB10, and MYB72 were induced in response to Fe deficiency stress, which enhanced the interaction between bZIP44 and MYB10 or MYB72 proteins, synergistically activated the transcriptional activity of NAS2 and NAS4, promoted NA synthesis, and improved Fe transport, thereby enhancing plant tolerance to Fe deficiency stress.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico , Regulación de la Expresión Génica de las Plantas , Deficiencias de Hierro , Estrés Fisiológico , Factores de Transcripción , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Estrés Fisiológico/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Hierro/metabolismo , Regiones Promotoras Genéticas/genética , Unión Proteica , Transferasas Alquil y Aril/metabolismo , Transferasas Alquil y Aril/genética , Ácido Azetidinocarboxílico/análogos & derivados , Ácido Azetidinocarboxílico/metabolismo , Plantas Modificadas Genéticamente
10.
New Phytol ; 242(1): 231-246, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38326943

RESUMEN

N6 -methyladenosine (m6 A) is the most abundant mRNA modification in eukaryotes and is an important regulator of gene expression as well as many other critical biological processes. However, the characteristics and functions of m6 A in peanut (Arachis hypogea L.) resistance to bacterial wilt (BW) remain unknown. Here, we analyzed the dynamic of m6 A during infection of resistant (H108) and susceptible (H107) peanut accessions with Ralstonia solanacearum (R. solanacearum), the causative agent of BW. Throughout the transcriptome, we identified 'URUAY' as a highly conserved motif for m6 A in peanut. The majority of differential m6 A located within the 3' untranslated region (UTR) of the transcript, with fewer in the exons. Integrative analysis of RNA-Seq and m6 A methylomes suggests the correlation between m6 A and gene expression in peanut R. solanacearum infection, and functional analysis reveals that m6 A-associated genes were related to plant-pathogen interaction. Our experimental analysis suggests that AhALKBH15 is an m6 A demethylase in peanut, leading to decreased m6 A levels and upregulation of the resistance gene AhCQ2G6Y. The upregulation of AhCQ2G6Y expression appears to promote BW resistance in the H108 accession.


Asunto(s)
Arachis , Ralstonia solanacearum , Arachis/genética , Transcriptoma , Regulación hacia Arriba , ARN , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología
11.
J Hum Genet ; 69(1): 33-39, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37853116

RESUMEN

Duane retraction syndrome (DRS) is a rare congenital eye movement disorder causing by the dysplasia of abducens nerve, and has highly variable phenotype. MRI can reveal the endophenotype of DRS. Most DRS cases are sporadical and isolated, while some are familial or accompanied by other ocular disorders and systemic congenital abnormalities. CHN1 was the most common causative gene for familial DRS. Until now, 13 missense variants of CHN1 have been reported. In this study, we enrolled two unrelated pedigrees with DRS. Detailed clinical examinations, MRI, and the whole exome sequencing (WES) were performed to reveal their clinical and genetic characteristics. Patients from pedigree-1 presented with isolated DRS, and a novel heterozygous variant c.650 A > G, p. His217Arg was identified in CHN1 gene. Patients from pedigree-2 presented with classic DRS and abnormalities in auricle morphology, and the pedigree segregated another novel heterozygous CHN1 variant c.637 T > C, p. Phe213Leu. A variety of bioinformatics software predicted that the two variants had deleterious or disease-causing effects. After injecting of two mutant CHN1 mRNAs into zebrafish embryos, the dysplasia of ocular motor nerves (OMN) was observed. Our present findings expanded the phenotypic and genotypic spectrum of CHN1 related DRS, as well as provided new insights into the role of CHN1 in OMN development. Genetic testing is strongly recommended for patients with a DRS family history or accompanying systemic congenital abnormalities.


Asunto(s)
Síndrome de Retracción de Duane , Anomalías del Ojo , Animales , Humanos , Síndrome de Retracción de Duane/genética , Pez Cebra/genética , Linaje , Mutación Missense
12.
Opt Express ; 32(3): 3251-3265, 2024 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-38297551

RESUMEN

This study investigates the utilization of an in-fiber interferometer embedded in polydimethylsiloxane (PDMS) to develop a highly sensitive tactile sensor. The tapered mode-field mismatch structure is more conducive to stimulating strong high order modes to promote the sensitivity of the sensor. Experimental investigations are conducted to study the sensing performance of the sensor, resulting in a sensitivity of 23.636 nm/N and a detection limit of 0.746 mN. The experiments demonstrate that employing fast Fourier transform (FFT) and inverse FFT (IFFT) methods to filter weak high order modes significantly improves the repeatability of the sensor, resulting in a repeatability error of less than 1%.

13.
Invest New Drugs ; 42(2): 161-170, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38367168

RESUMEN

The specific first-line regimen for advanced gastric cancer (GC) is still controversial. The benefit of apatinib for first-line treatment of advanced GC remains unknown and needs to be further explored. Eighty-two patients with advanced GC treated in our institution from October 2017 to March 2023 were retrospectively reviewed. All individuals had her-2 negative GC and had received at least two cycles of first-line treatment, including 44 patients in the combination treatment group (apatinib in combination with chemotherapy with or without immunotherapy) and 38 patients in the simple chemotherapy group. We evaluated the efficacy and safety of apatinib in combination with chemotherapy with or without immunotherapy in the first-line treatment of advanced GC by comparing the efficacy, progression-free survival (PFS), and adverse events in two groups of patients. The median PFS of the simple chemotherapy group was 9.25 months (95% confidence interval (CI), 6.1-11.2 months), and that of the combination treatment group was 10.9 months (95% CI, 7.9-15.8 months), which was 1.65 months longer than the simple chemotherapy group. Statistically significant differences are shown (P = 0.022). The objective response rate (ORR) of the combination treatment group was 65.9%, and 36.8% in the simple chemotherapy group. Statistically significant differences are shown (P = 0.014). No serious (Grade IV) adverse events occurred in either group. Our study indicates that apatinib in combination with chemotherapy with or without immunotherapy as first-line treatment for advanced GC exhibits good anti-tumor activity and is well tolerated by patients.


Asunto(s)
Antineoplásicos , Piridinas , Neoplasias Gástricas , Humanos , Neoplasias Gástricas/tratamiento farmacológico , Neoplasias Gástricas/patología , Antineoplásicos/efectos adversos , Estudios Retrospectivos , Inmunoterapia/efectos adversos
14.
Theor Appl Genet ; 137(4): 84, 2024 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-38493242

RESUMEN

KEY MESSAGE: Agronomic traits were evaluated in 1250 foxtail millet accessions, and a crucial gene SiTGW6 governing grain yield was identified. Elite haplotypes and dCAPS markers developed for SiTGW6 facilitate molecular breeding. A comprehensive evaluation of phenotypic characteristics and genetic diversity in germplasm resources are important for gene discovery and breeding improvements. In this study, we conducted a comprehensive evaluation of 1250 foxtail millet varieties, assessing seven grain yield-related traits and fourteen common agronomic traits over two years. Principal component analysis, correlation analysis, and cluster analysis revealed a strong positive correlation between 1000-grain weight and grain width with grain yield, emphasizing their importance in foxtail millet breeding. Additionally, we found that panicle weight positively correlated with 1000-grain weight but negatively correlated with branch and tiller numbers, indicating selection factors during domestication and breeding. Using this information, we identified 27 germplasm resources suitable for high-yield foxtail millet breeding. Furthermore, through an integration of haplotype variations and phenotype association analysis, we pinpointed a crucial gene, SiTGW6, responsible for governing grain yield in foxtail millet. SiTGW6 encodes an IAA-glucose hydrolase, primarily localized in the cytoplasm and predominantly expressed in flowering panicles. Employing RNAseq analysis, we identified 1439 differentially expressed genes across various SiTGW6 haplotypes. Functional enrichment analysis indicating that SiTGW6 regulates grain yield through the orchestration of auxin and glucan metabolism, as well as plant hormone signaling pathways. Additionally, we have identified elite haplotypes and developed dCAPS markers for SiTGW6, providing valuable technical tools to facilitate molecular breeding efforts in foxtail millet.


Asunto(s)
Setaria (Planta) , Setaria (Planta)/genética , Fitomejoramiento , Fenotipo , Grano Comestible/genética , Variación Genética
15.
Theor Appl Genet ; 137(8): 178, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38976061

RESUMEN

KEY MESSAGE: Three QTLs associated with low-temperature tolerance were identified by genome-wide association analysis, and 15 candidate genes were identified by haplotype analysis and gene expression analyses. Low temperature is a critical factor affecting the geographical distribution, growth, development, and yield of soybeans, with cold stress during seed germination leading to substantial productivity loss. In this study, an association panel comprising 260 soybean accessions was evaluated for four germination traits and four cold tolerance index traits, revealing extensive variation in cold tolerance. Genome-wide association study (GWAS) identified 10 quantitative trait nucleotides (QTNs) associated with cold tolerance, utilizing 30,799 single nucleotide polymorphisms (SNPs) and four GWAS models. Linkage disequilibrium (LD) analysis positioned these QTNs within three cold-tolerance quantitative trait loci (QTL) and, with QTL19-1, was positioned by three multi-locus models, underscoring its importance as a key QTL. Integrative haplotype analysis, supplemented by transcriptome analysis, uncovered 15 candidate genes. The haplotypes within the genes Glyma.18G044200, Glyma.18G044300, Glyma.18G044900, Glyma.18G045100, Glyma.19G222500, and Glyma.19G222600 exhibited significant phenotypic variations, with differential expression in materials with varying cold tolerance. The QTNs and candidate genes identified in this study offer substantial potential for marker-assisted selection and gene editing in breeding cold-tolerant soybeans, providing valuable insights into the genetic mechanisms underlying cold tolerance during soybean germination.


Asunto(s)
Frío , Germinación , Glycine max , Haplotipos , Desequilibrio de Ligamiento , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo , Glycine max/genética , Glycine max/crecimiento & desarrollo , Germinación/genética , Estudio de Asociación del Genoma Completo , Fenotipo , Estudios de Asociación Genética , Mapeo Cromosómico/métodos , Genes de Plantas
16.
Langmuir ; 2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38315709

RESUMEN

Clinical solutions of bone defects caused by periodontitis involve surgical treatment and subsequent anti-infection treatment using antibiotics. Such a strategy faces a key challenge in that the excessive host immune response results in the damage of periodontal tissues. Consequently, it is of great importance to develop novel periodontitis treatment that allows the regulation of the host immune response and promotes the generation of periodontal tissues. Irisin has a good bone regeneration ability and could reduce the inflammatory reaction by regulating the differentiation of macrophages. In this study, we loaded irisin onto bioactive glass nanoparticles (BGNs) to prepare a composite, irisin-BGNs (IR-BGNs) with anti-inflammatory, bacteriostatic, and tissue regeneration functions, providing a novel idea for the design of ideal materials for repairing oral tissue defects caused by periodontitis. We also verified that the IR-BGNs had better anti-inflammatory properties on RAW264.7 cells compared to irisin and BGNs alone. Strikingly, when hPDLCs were stimulated with IR-BGNs, they exhibited increased expression of markers linked to osteogenesis, ALP activity, and mineralization ability in comparison to the negative control. Furthermore, on the basis of RNA sequencing results, we validated that the p38 pathway can contribute to the osteogenic differentiation of the IR-BGNs. This work may offer new thoughts on the design of ideal materials for repairing oral tissue defects.

17.
Pharmacol Res ; 203: 107156, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38522762

RESUMEN

Cardiovascular diseases (CVDs) are the leading cause of death worldwide, and morbidity and mortality rates continue to rise. Atherosclerosis constitutes the principal etiology of CVDs. Endothelial injury, inflammation, and dysfunction are the initiating factors of atherosclerosis. Recently, we reported that endothelial adenosine receptor 2 A (ADORA2A), a G protein-coupled receptor (GPCR), plays critical roles in neovascularization disease and cerebrovascular disease. However, the precise role of endothelial ADORA2A in atherosclerosis is still not fully understood. Here, we showed that ADORA2A expression was markedly increased in the aortic endothelium of humans with atherosclerosis or Apoe-/- mice fed a high-cholesterol diet. In vivo studies unraveled that endothelial-specific Adora2a deficiency alleviated endothelial-to-mesenchymal transition (EndMT) and prevented the formation and instability of atherosclerotic plaque in Apoe-/- mice. Moreover, pharmacologic inhibition of ADORA2A with KW6002 recapitulated the anti-atherogenic phenotypes observed in genetically Adora2a-deficient mice. In cultured human aortic endothelial cells (HAECs), siRNA knockdown of ADORA2A or KW6002 inhibition of ADORA2A decreased EndMT, whereas adenoviral overexpression of ADORA2A induced EndMT. Mechanistically, ADORA2A upregulated ALK5 expression via a cAMP/PKA/CREB axis, leading to TGFß-Smad2/3 signaling activation, thereby promoting EndMT. In conclusion, these findings, for the first time, demonstrate that blockade of ADORA2A attenuated atherosclerosis via inhibition of EndMT induced by the CREB1-ALK5 axis. This study discloses a new link between endothelial ADORA2A and EndMT and indicates that inhibiting endothelial ADORA2A could be an effective novel strategy for the prevention and treatment of atherosclerotic CVDs.


Asunto(s)
Aterosclerosis , Proteína de Unión a Elemento de Respuesta al AMP Cíclico , Transición Epitelial-Mesenquimal , Ratones Endogámicos C57BL , Receptor de Adenosina A2A , Receptor Tipo I de Factor de Crecimiento Transformador beta , Animales , Humanos , Masculino , Ratones , Antagonistas del Receptor de Adenosina A2/farmacología , Aterosclerosis/metabolismo , Aterosclerosis/patología , Aterosclerosis/genética , Células Cultivadas , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Células Endoteliales/metabolismo , Células Endoteliales/efectos de los fármacos , Células Endoteliales/patología , Transición Epitelial-Mesenquimal/efectos de los fármacos , Ratones Noqueados , Receptor de Adenosina A2A/metabolismo , Receptor de Adenosina A2A/genética , Receptor Tipo I de Factor de Crecimiento Transformador beta/genética , Receptor Tipo I de Factor de Crecimiento Transformador beta/metabolismo , Transducción de Señal
18.
J Periodontal Res ; 59(2): 355-365, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38102743

RESUMEN

OBJECTIVES: This study sought to explore the role of developmental endothelial locus-1 (DEL-1) in osteogenic differentiation of human periodontal ligament stem cells (hPDLSCs) and investigate the therapeutic effect of DEL-1 in ligature-induced experimental periodontitis with type 2 diabetes mellitus (T2DM). BACKGROUND: T2DM is a significant risk factor for periodontitis. Treatment modalities for periodontitis with T2DM are being explored. DEL-1 is a versatile protein that can modulate the different stages of inflammatory diseases including periodontitis. The direct effect of DEL-1 on osteogenic differentiation of PDLSCs in periodontitis with T2DM is poorly understood. METHODS: Primary hPDLSCs were isolated from periodontal ligament tissue and identified by flow cytometry. In osteogenesis experiments, alkaline phosphatase (ALP), Alizarin Red staining and western blot were used to assess the osteogenic effect of DEL-1 on hPDLSCs in high glucose and inflammation environments. The mouse model of ligature-induced experimental periodontitis was established. H&E and Masson's trichrome staining were used to assess the change of periodontal tissue after local periodontal injection of DEL-1. Immunohistochemical staining was used to evaluate osteogenic-related protein expression. RESULTS: hPDLSCs expressed mesenchymal stem cell (MSC)-specific surface markers and were negative for hematopoietic cell surface markers. hPDLSCs had the potential for multidirectional differentiation. DEL-1 could enhance the osteogenic differentiation of hPDLSCs in high glucose and inflammation environments, although it did not return to the control level. Histological staining showed that DEL-1 contributed to alveolar bone regeneration and osteogenic-related protein expression, but the degree of improvement in T2DM mice was lower than in non-T2DM mice. CONCLUSIONS: In summary, we demonstrated that DEL-1 could promote osteogenic differentiation of hPDLSCs in high glucose and inflammation environment and rescue alveolar bone loss in experimental periodontitis with T2DM, which could provide a novel therapeutic target for periodontitis with T2DM.


Asunto(s)
Diabetes Mellitus Tipo 2 , Periodontitis , Humanos , Ratones , Animales , Osteogénesis , Diabetes Mellitus Tipo 2/complicaciones , Diferenciación Celular , Inflamación , Regeneración Ósea , Ligamento Periodontal , Glucosa/farmacología , Células Cultivadas
19.
Mol Ther ; 31(1): 260-268, 2023 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-36245127

RESUMEN

Accurate genome editing based on various molecular tools has always been the focus of gene-editing research and the primary goal for therapeutic application. The clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 system is a well-established gene-editing method that is preferred due to its simplicity and high efficiency. In this study, a group of single-stranded DNA aptamers with high affinity and high specificity for the Cas9 protein were obtained by the systematic evolution of ligands through the exponential enrichment method. Their binding affinity and possible binding domains to the Cas9 protein were analyzed. In addition, we demonstrated the effectiveness of aptamers in regulating dCas9-modulated gene transcription, in terms of both transcriptional activation and repression. Additionally, the aptamers successfully reduced the off-target effect and improved the efficiency of gene homologous recombination repair mediated by CRISPR-Cas9. The findings suggest a potential method to better control precise gene editing and enrich the diversity of modulating tools for the CRISPR-Cas9 system.


Asunto(s)
Aptámeros de Nucleótidos , Proteína 9 Asociada a CRISPR , Proteína 9 Asociada a CRISPR/genética , Reparación del ADN por Recombinación , Sistemas CRISPR-Cas , Aptámeros de Nucleótidos/genética , División del ADN , Edición Génica/métodos
20.
Phytopathology ; 114(6): 1215-1225, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38281141

RESUMEN

Anthracocystis destruens is the causal agent of broomcorn millet (Panicum miliaceum) smut disease, which results in serious yield losses in broomcorn millet production. However, the molecular basis underlying broomcorn millet defense against A. destruens is less understood. In this study, we investigated how broomcorn millet responds to infection by A. destruens by employing a comprehensive multi-omics approach. We examined the responses of broomcorn millet across transcriptome, metabolome, and microbiome levels. Infected leaves exhibited an upregulation of genes related to photosynthesis, accompanied by a higher accumulation of photosynthesis-related compounds and alterations in hormonal levels. However, broomcorn millet genes involved in immune response were downregulated post A. destruens infection, suggesting that A. destruens may suppress broomcorn millet immunity. In addition, we show that the immune suppression and altered host metabolism induced by A. destruens have no significant effect on the microbial community structure of broomcorn millet leaf, thus providing a new perspective for understanding the tripartite interaction between plant, pathogen, and microbiota.


Asunto(s)
Panicum , Enfermedades de las Plantas , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/inmunología , Panicum/microbiología , Hojas de la Planta/microbiología , Ascomicetos/fisiología , Transcriptoma , Fotosíntesis , Metaboloma , Microbiota , Regulación de la Expresión Génica de las Plantas , Multiómica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA