Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 120(9): e2207003120, 2023 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-36812204

RESUMEN

Schizophrenia is a serious mental disorder, and existing antipsychotic drugs show limited efficacy and cause unwanted side effects. The development of glutamatergic drugs for schizophrenia is currently challenging. Most functions of histamine in the brain are mediated by the histamine H1 receptor; however, the role of the H2 receptor (H2R) is not quite clear, especially in schizophrenia. Here, we found that expression of H2R in glutamatergic neurons of the frontal cortex was decreased in schizophrenia patients. Selective knockout of the H2R gene (Hrh2) in glutamatergic neurons (CaMKIIα-Cre; Hrh2 fl/fl) induced schizophrenia-like phenotypes including sensorimotor gating deficits, increased susceptibility to hyperactivity, social withdrawal, anhedonia, and impaired working memory, as well as decreased firing of glutamatergic neurons in the medial prefrontal cortex (mPFC) in in vivo electrophysiological tests. Selective knockdown of H2R in glutamatergic neurons in the mPFC but not those in the hippocampus also mimicked these schizophrenia-like phenotypes. Furthermore, electrophysiology experiments established that H2R deficiency decreased the firing of glutamatergic neurons by enhancing the current through hyperpolarization-activated cyclic nucleotide-gated channels. In addition, either H2R overexpression in glutamatergic neurons or H2R agonism in the mPFC counteracted schizophrenia-like phenotypes in an MK-801-induced mouse model of schizophrenia. Taken together, our results suggest that deficit of H2R in mPFC glutamatergic neurons may be pivotal to the pathogenesis of schizophrenia and that H2R agonists can be regarded as potentially efficacious medications for schizophrenia therapy. The findings also provide evidence for enriching the conventional glutamate hypothesis for the pathogenesis of schizophrenia and improve the understanding of the functional role of H2R in the brain, especially in glutamatergic neurons.


Asunto(s)
Histamina , Esquizofrenia , Ratones , Animales , Histamina/metabolismo , Neuronas/metabolismo , Receptores Histamínicos H2 , Memoria a Corto Plazo
2.
J Am Chem Soc ; 146(9): 6397-6407, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38394777

RESUMEN

Catalyst supports play an essential role in catalytic reactions, hinting at pronounced metal-support effects. Zeolites are a propitious support in heterogeneous catalysts, while their use in the electrocatalytic CO2 reduction reaction has been limited as yet because of their electrically insulating nature and serious competing hydrogen evolution reaction (HER). Enlightened by theoretical prediction, herein, we implant zinc ions into the structural skeleton of a zeolite Y to strategically tailor a favorable electrocatalytic platform with remarkably enhanced electronic conduction and strong HER inhibition capability, which incorporates ultrafine cadmium oxide nanoclusters as guest species into the supercages of the tailored 12-ring window framework. The metal d-bandwidth tuning of cadmium by skeletal zinc steers the extent of substrate-molecule orbital mixing, enhancing the stabilization of the key intermediate *COOH while weakening the CO poisoning effect. Furthermore, the strong cadmium-zinc interplay causes a considerable thermodynamic barrier for water dissociation in the conversion of H+ to *H, potently suppressing the competing HER. Therefore, we achieve an industrial-level partial current density of 335 mA cm-2 and remarkable Faradaic efficiency of 97.1% for CO production and stably maintain Faradaic efficiency above 90% at the industrially relevant current density for over 120 h. This work provides a proof of concept of tailored conductive zeolite as a favorable electrocatalytic support for industrial-level CO2 electrolysis and will significantly enhance the adaptability of conductive zeolite-based electrocatalysts in a variety of electrocatalysis and energy conversion applications.

3.
Am J Hum Genet ; 108(8): 1526-1539, 2021 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-34270938

RESUMEN

Pituitary hormone deficiency occurs in ∼1:4,000 live births. Approximately 3% of the cases are due to mutations in the alpha isoform of POU1F1, a pituitary-specific transcriptional activator. We found four separate heterozygous missense variants in unrelated individuals with hypopituitarism that were predicted to affect a minor isoform, POU1F1 beta, which can act as a transcriptional repressor. These variants retain repressor activity, but they shift splicing to favor the expression of the beta isoform, resulting in dominant-negative loss of function. Using a high-throughput splicing reporter assay, we tested 1,070 single-nucleotide variants in POU1F1. We identified 96 splice-disruptive variants, including 14 synonymous variants. In separate cohorts, we found two additional synonymous variants nominated by this screen that co-segregate with hypopituitarism. This study underlines the importance of evaluating the impact of variants on splicing and provides a catalog for interpretation of variants of unknown significance in POU1F1.


Asunto(s)
Ensayos Analíticos de Alto Rendimiento/métodos , Hipopituitarismo/patología , Mutación , Hormonas Hipofisarias/deficiencia , Empalme del ARN/genética , Factor de Transcripción Pit-1/genética , Adolescente , Adulto , Niño , Preescolar , Humanos , Hipopituitarismo/etiología , Hipopituitarismo/metabolismo , Masculino , Linaje
4.
Angew Chem Int Ed Engl ; 63(21): e202401974, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38470070

RESUMEN

Despite many additives have been reported for aqueous zinc ion batteries, steric-hindrance effect of additives and its correlation with Zn2+ solvation structure have been rarely reported. Herein, large-sized sucrose biomolecule is selected as a paradigm additive, and steric-hindrance electrolytes (STEs) are developed to investigate the steric-hindrance effect for solvation structure regulation. Sucrose molecules do not participate in Zn2+ solvation shell, but significantly homogenize the distribution of solvated Zn2+ and enlarge Zn2+ solvation shell with weakened Zn2+-H2O interaction due to the steric-hindrance effect. More importantly, STEs afford the water-shielding electric double layer and in situ construct the organic and inorganic hybrid solid electrolyte interface, which effectively boost Zn anode reversibility. Remarkably, Zn//NVO battery presents high capacity of 3.9 mAh ⋅ cm-2 with long cycling stability for over 650 cycles at lean electrolyte of 4.5 µL ⋅ mg-1 and low N/P ratio of 1.5, and the stable operation at wide temperature (-20 °C~+40 °C).

5.
J Mol Cell Cardiol ; 175: 62-66, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36584478

RESUMEN

Myh6-Cre transgenic mouse line was known to express Cre recombinase only in the heart. Nevertheless, during breeding Myh6-Cre to Rosa26fstdTom reporter (tdTom) mouse line, we observed that a significant part of their F2 tdTom/+ offspring had tdTom reporter gene universally activated. Our results show that Myh6-Cre transgenic mice have Cre recombinase activity in a subpopulation of the male germline cells, and that Myh6 gene transcripts are enriched in the interstitial Leydig cells and the undifferentiated spermatogonia stem cells. In summary, the current study confirms that the previously known "heart-specific" Myh6 promoter drives Cre expression in the testis.


Asunto(s)
Células Germinativas , Integrasas , Masculino , Ratones , Animales , Regiones Promotoras Genéticas/genética , Ratones Transgénicos , Integrasas/genética , Integrasas/metabolismo , Células Germinativas/metabolismo
6.
Chem Soc Rev ; 51(8): 2917-2938, 2022 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-35285470

RESUMEN

Porous organic polymers (POPs), a versatile class of materials that possess many tunable properties such as high chemical absorptivity and ionic conductivity, are emerging candidate electrode materials, permselective membranes, ionic conductors, interfacial stabilizers and functional precursors to synthesize advanced porous carbon. Based on their crystal structure features, the emerging POPs can be classified into two subclasses: amorphous POPs (hyper cross-linked polymers, polymers with intrinsic microporosity, conjugated microporous polymers, porous aromatic frameworks, etc.) and crystalline POPs (covalent organic frameworks, etc.). This tutorial review provides a brief introduction of different types of POPs in terms of their classification and functions for tackling the remaining challenges in various types of Li-chemistry-based batteries. In situ and ex situ characterization studies are also discussed to highlight their importance and applicability for the structural investigation of POPs to reveal the underlying mechanism of POPs over the course of the electrochemical process. Although some revolutionary advances have been achieved, the development of POPs in Li-chemistry-based batteries is still in its infancy. Perspectives regarding future application and mechanistic insights of POPs in battery studies are outlined at the end.

7.
Small ; 18(50): e2205233, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36319473

RESUMEN

Anode-less lithium metal batteries (ALMBs), whether employing liquid or solid electrolytes, have significant advantages such as lowered costs and increased energy density over lithium metal batteries (LMBs). Among many issues, dendrite growth and non-uniform plating which results in poor coulombic efficiency are the key issues that viciously decrease the longevity of the ALMBs. As a result, lowering the nucleation barrier and facilitating lithium growth towards uniform plating is even more critical in ALMBs. While extensive reviews have focused to describe strategies to achieve high performance in LMBs and ALMBs, this review focuses on strategies designed to directly facilitate nucleation and growth of dendrite-free ALMBs. The review begins with a discussion of the primary components of ALMBs, followed by a brief theoretical analysis of the nucleation and growth mechanism for ALMBs. The review then emphasizes key examples for each strategy in order to highlight the mechanisms and rationale that facilitate lithium plating. By comparing the structure and mechanisms of key materials, the review discusses their benefits and drawbacks. Finally, major trends and key findings are summarized, as well as an outlook on the scientific and economic gaps in ALMBs.


Asunto(s)
Suministros de Energía Eléctrica , Litio , Electrodos , Metales
8.
Angew Chem Int Ed Engl ; 61(23): e202117703, 2022 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-35233896

RESUMEN

The construction of safe and environmentally-benign solid-state electrolytes (SSEs) with intrinsic hydroxide ion-conduction for flexible zinc-air batteries is highly desirable yet extremely challenging. Herein, hierarchically nanostructured CCNF-PDIL SSEs with reinforced concrete architecture are constructed by nanoconfined polymerization of dual-cation ionic liquid (PDIL, concrete) within a robust three-dimensional porous cationic cellulose nanofiber matrix (CCNF, reinforcing steel), where plenty of penetrating ion-conductive channels are formed and undergo dynamic self-rearrangement under different hydrated levels. The CCNF-PDIL SSEs synchronously exhibit good flexibility, mechanical robustness, superhigh ion conductivity of 286.5 mS cm-1 , and decent water uptake. The resultant flexible solid-state zinc-air batteries deliver a high-power density of 135 mW cm-2 , a specific capacity of 775 mAh g-1 and an ultralong cycling stability with continuous operation of 240 hours for 720 cycles, far outperforming those of the state-of-the-art solid-state batteries. The marriage of biomaterials with the diversity of ionic liquids creates enormous opportunities to construct advanced SSEs for solid-state batteries.

9.
Blood ; 124(20): 3155-64, 2014 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-25208887

RESUMEN

Plasminogen is the precursor of the serine protease plasmin, a central enzyme of the fibrinolytic system. Plasma levels of plasminogen vary by almost 2-fold among healthy individuals, yet little is known about its heritability or genetic determinants in the general population. In order to identify genetic factors affecting the natural variation of plasminogen levels, we performed a genome-wide association study and linkage analysis in a sample of 3456 young healthy individuals who participated in the Genes and Blood Clotting Study (GABC) or the Trinity Student Study (TSS). Heritability of plasminogen levels was 48.1% to 60.0%. Tobacco smoking and female sex were associated with higher levels of plasminogen. In the meta-analysis, 11 single-nucleotide polymorphisms (SNPs) in 2 regions reached genome-wide significance (P < 5.0E-8). Of these, 9 SNPs were near the PLG or LPA genes on Chr6q26, whereas 2 were on Chr19q13 and 5' upstream of SIGLEC14. These 11 SNPs represented 4 independent signals and collectively explained 6.8% of plasminogen level variation in the study populations. The strongest association was observed for a nonsynonymous SNP in the PLG gene (R523W). Individuals bearing an additional copy of this allele had an average decrease of 13.4% in plasma plasminogen level.


Asunto(s)
Apolipoproteínas A/genética , Lectinas/genética , Plasminógeno/análisis , Plasminógeno/genética , Receptores de Superficie Celular/genética , Fumar/sangre , Adolescente , Adulto , Estudios de Cohortes , Femenino , Eliminación de Gen , Ligamiento Genético , Variación Genética , Estudio de Asociación del Genoma Completo , Humanos , Masculino , Polimorfismo de Nucleótido Simple , Adulto Joven
10.
Clin Endocrinol (Oxf) ; 85(3): 408-14, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27000987

RESUMEN

INTRODUCTION: Mutations in the transcription factor HESX1 can cause isolated growth hormone deficiency (IGHD) or combined pituitary hormone deficiency (CPHD) with or without septo-optic dysplasia (SOD). So far there is no clear genotype-phenotype correlation. PATIENTS AND RESULTS: We report four different recessive loss-of-function mutations in three unrelated families with CPHD and no midline defects or SOD. A homozygous p.R160C mutation was found by Sanger sequencing in two siblings from a consanguineous family. These patients presented with ACTH, TSH and GH deficiencies, severe anterior pituitary hypoplasia (APH) or pituitary aplasia (PA) and normal posterior pituitary. The p.R160C mutation was previously reported in a case with SOD, CPHD and ectopic posterior pituitary (EPP). Using exome sequencing, a homozygous p.I26T mutation was found in a Brazilian patient born to consanguineous parents. This patient had evolving CPHD, normal ACTH, APH and normal posterior pituitary (NPP). A previously reported patient homozygous for p.I26T had evolving CPHD and EPP. Finally, we identified compound heterozygous mutations in HESX1, p.[R159W];[R160H], in a patient with PA and CPHD. We showed that both of these mutations abrogate the ability of HESX1 to repress PROP1-mediated transcriptional activation. A patient homozygous for p.R160H was previously reported in a patient with CPHD, EPP, APH. CONCLUSION: These three examples demonstrate that HESX1 mutations cause variable clinical features in patients, which suggests an influence of modifier genes or environmental factors on the phenotype.


Asunto(s)
Proteínas de Homeodominio/genética , Hipopituitarismo/genética , Mutación , Adolescente , Secuencia de Bases , Brasil , Familia , Femenino , Estudios de Asociación Genética , Humanos , Hipopituitarismo/diagnóstico , Recién Nacido , Masculino , Medio Oriente , Linaje
11.
Nature ; 463(7283): 943-7, 2010 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-20164927

RESUMEN

The genetic structure of the indigenous hunter-gatherer peoples of southern Africa, the oldest known lineage of modern human, is important for understanding human diversity. Studies based on mitochondrial and small sets of nuclear markers have shown that these hunter-gatherers, known as Khoisan, San, or Bushmen, are genetically divergent from other humans. However, until now, fully sequenced human genomes have been limited to recently diverged populations. Here we present the complete genome sequences of an indigenous hunter-gatherer from the Kalahari Desert and a Bantu from southern Africa, as well as protein-coding regions from an additional three hunter-gatherers from disparate regions of the Kalahari. We characterize the extent of whole-genome and exome diversity among the five men, reporting 1.3 million novel DNA differences genome-wide, including 13,146 novel amino acid variants. In terms of nucleotide substitutions, the Bushmen seem to be, on average, more different from each other than, for example, a European and an Asian. Observed genomic differences between the hunter-gatherers and others may help to pinpoint genetic adaptations to an agricultural lifestyle. Adding the described variants to current databases will facilitate inclusion of southern Africans in medical research efforts, particularly when family and medical histories can be correlated with genome-wide data.


Asunto(s)
Población Negra/genética , Etnicidad/genética , Genoma Humano/genética , Pueblo Asiatico/genética , Exones/genética , Genética Médica , Humanos , Filogenia , Polimorfismo de Nucleótido Simple/genética , Sudáfrica/etnología , Población Blanca/genética
13.
Adv Sci (Weinh) ; 11(24): e2308021, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38561969

RESUMEN

The severe Zn-dendrite growth and insufficient carbon-based cathode performance are two critical issues that hinder the practical applications of flexible Zn-ion micro-ssupercapacitors (FZCs). Herein, a self-adaptive electrode design concept of the synchronous improvement on both the cathode and anode is proposed to enhance the overall performance of FZCs. Polypyrrole doped with anti-expansion graphene oxide and acrylamide (PPy/GO-AM) on the cathode side can exhibit remarkable electrochemical performance, including decent capacitance and cycling stability, as well as exceptional mechanical properties. Meanwhile, a robust protective polymeric layer containing reduced graphene oxide and polyacrylamide is self-assembled onto the Zn surface (rGO/PAM@Zn) at the anode side, by which the "tip effect" of Zn small protuberance can be effectively alleviated, the Zn-ion distribution homogenized, and dendrite growth restricted. Benefiting from these advantages, the FZCs deliver an excellent specific capacitance of 125 mF cm-2 (125 F cm-3) at 1 mA cm-2, along with a maximum energy density of 44.4 µWh cm-2, and outstanding long-term durability with 90.3% capacitance remained after 5000 cycles. This conformal electrode design strategy is believed to enlighten the practical design of high-performance in-plane flexible Zn-based electrochemical energy storage devices (EESDs) by simultaneously tackling the challenges faced by Zn anodes and capacitance-type cathodes.

14.
bioRxiv ; 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38559249

RESUMEN

The human uterus is a complex and dynamic organ whose lining grows, remodels, and regenerates in every menstrual cycle or upon tissue damage. Here we applied single-cell RNA sequencing to profile more the 50,000 uterine cells from both the endometrium and myometrium of 5 healthy premenopausal individuals, and jointly analyzed the data with a previously published dataset from 15 subjects. The resulting normal uterus cell atlas contains more than 167K cells representing the lymphatic endothelium, blood endothelium, stromal, ciliated epithelium, unciliated epithelium, and immune cell populations. Focused analyses within each major cell type and comparisons with subtype labels from prior studies allowed us to document supporting evidence, resolve naming conflicts, and to propose a consensus annotation system of 39 subtypes. We release their gene expression centroids, differentially expressed genes, and mRNA patterns of literature-based markers as a shared community resource. We find many subtypes show dynamic changes over different phases of the cycle and identify multiple potential progenitor cells: compartment-wide progenitors for each major cell type, transitional cells that are upstream of other subtypes, and potential cross-lineage multipotent stromal progenitors that may be capable of replenishing the epithelial, stromal, and endothelial compartments. When compared to the healthy premenopausal samples, a postpartum and a postmenopausal uterus sample revealed substantially altered tissue composition, involving the rise or fall of stromal, endothelial, and immune cells. The cell taxonomy and molecular markers we report here are expected to inform studies of both basic biology of uterine function and its disorders. SIGNIFICANCE: We present single-cell RNA sequencing data from seven individuals (five healthy pre-menopausal women, one post-menopausal woman, and one postpartum) and perform an integrated analysis of this data alongside 15 previously published scRNA-seq datasets. We identified 39 distinct cell subtypes across four major cell types in the uterus. By using RNA velocity analysis and centroid-centroid comparisons we identify multiple computationally predicted progenitor populations for each of the major cell compartments, as well as potential cross-compartment, multi-potent progenitors. While the function and interactions of these cell populations remain to be validated through future experiments, the markers and their "dual characteristics" that we describe will serve as a rich resource to the scientific community. Importantly, we address a significant challenge in the field: reconciling multiple uterine cell taxonomies being proposed. To achieve this, we focused on integrating historical and contemporary knowledge across multiple studies. By providing detailed evidence used for cell classification we lay the groundwork for establishing a stable, consensus cell atlas of the human uterus.

15.
Sci Adv ; 10(14): eadm7506, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38578993

RESUMEN

The reproductive and endocrine functions of the ovary involve spatially defined interactions among specialized cell populations. Despite the ovary's importance in fertility and endocrine health, functional attributes of ovarian cells are largely uncharacterized. Here, we profiled >18,000 genes in 257 regions from the ovaries of two premenopausal donors to examine the functional units in the ovary. We also generated single-cell RNA sequencing data for 21,198 cells from three additional donors and identified four major cell types and four immune cell subtypes. Custom selection of sampling areas revealed distinct gene activities for oocytes, theca, and granulosa cells. These data contributed panels of oocyte-, theca-, and granulosa-specific genes, thus expanding the knowledge of molecular programs driving follicle development. Serial samples around oocytes and across the cortex and medulla uncovered previously unappreciated variation of hormone and extracellular matrix remodeling activities. This combined spatial and single-cell atlas serves as a resource for future studies of rare cells and pathological states in the ovary.


Asunto(s)
Folículo Ovárico , Ovario , Femenino , Humanos , Ovario/metabolismo , Folículo Ovárico/metabolismo , Oocitos/metabolismo , Células de la Granulosa/metabolismo , Perfilación de la Expresión Génica
16.
Adv Mater ; 36(11): e2311105, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38085968

RESUMEN

Developing commercially viable electrocatalyst lies at the research hotspot of rechargeable Zn-air batteries, but it is still challenging to meet the requirements of energy efficiency and durability in realistic applications. Strategic material design is critical to addressing its drawbacks in terms of sluggish kinetics of oxygen reactions and limited battery lifespan. Herein, a "raisin-bread" architecture is designed for a hybrid catalyst constituting cobalt nitride as the core nanoparticle with thin oxidized coverings, which is further deposited within porous carbon aerogel. Based on synchrotron-based characterizations, this hybrid provides oxygen vacancies and Co-Nx -C sites as the active sites, resulting from a strong coupling between CoOx Ny nanoparticles and 3D conductive carbon scaffolds. Compared to the oxide reference, it performs enhanced stability in harsh electrocatalytic environments, highlighting the benefits of the oxynitride. Furthermore, the 3D conductive scaffolds improve charge/mass transportation and boost durability of these active sites. Density functional theory calculations reveal that the introduced N species into hybrid can synergistically tune the d-band center of cobalt and improve its bifunctional activity. As a result, the obtained air cathode exhibits bifunctional overpotential of 0.65 V and a battery lifetime exceeding 1350 h, which sets a new record for rechargeable Zn-air battery reported so far.

17.
Stem Cell Reports ; 18(12): 2498-2514, 2023 12 12.
Artículo en Inglés | MEDLINE | ID: mdl-37995702

RESUMEN

Brain organoid methods are complicated by multiple rosette structures and morphological variability. We have developed a human brain organoid technique that generates self-organizing, single-rosette cortical organoids (SOSR-COs) with reproducible size and structure at early timepoints. Rather than patterning a 3-dimensional embryoid body, we initiate brain organoid formation from a 2-dimensional monolayer of human pluripotent stem cells patterned with small molecules into neuroepithelium and differentiated to cells of the developing dorsal cerebral cortex. This approach recapitulates the 2D to 3D developmental transition from neural plate to neural tube. Most monolayer fragments form spheres with a single central lumen. Over time, the SOSR-COs develop appropriate progenitor and cortical laminar cell types as shown by immunocytochemistry and single-cell RNA sequencing. At early time points, this method demonstrates robust structural phenotypes after chemical teratogen exposure or when modeling a genetic neurodevelopmental disorder, and should prove useful for studies of human brain development and disease modeling.


Asunto(s)
Células Madre Pluripotentes Inducidas , Células Madre Pluripotentes , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Encéfalo , Diferenciación Celular , Organoides
18.
Endocr Connect ; 12(8)2023 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-37166408

RESUMEN

Context: Congenital hypopituitarism is a genetically heterogeneous condition. Whole exome sequencing (WES) is a promising approach for molecular diagnosis of patients with this condition. Objectives: The aim of this study is to conduct WES in a patient with congenital hypopituitarism born to consanguineous parents, CDH2 screening in a cohort of patients with congenital hypopituitarism, and functional testing of a novel CDH2 variant. Design: Genomic DNA from a proband and her consanguineous parents was analyzed by WES. Copy number variants were evaluated. The genetic variants were filtered for population frequency (ExAC, 1000 genomes, gnomAD, and ABraOM), in silico prediction of pathogenicity, and gene expression in the pituitary and/or hypothalamus. Genomic DNA from 145 patients was screened for CDH2 by Sanger sequencing. Results: One female patient with deficiencies in growth hormone, thyroid-stimulating hormone, adrenocorticotropic hormone, luteinizing hormone, and follicle-stimulating hormone and ectopic posterior pituitary gland contained a rare homozygous c.865G>A (p.Val289Ile) variant in CDH2. To determine whether the p.Val289Ile variant in CDH2 affects cell adhesion properties, we stably transfected L1 fibroblast lines, labeled the cells with lipophilic dyes, and quantified aggregation. Large aggregates formed in cells expressing wildtype CDH2, but aggregation was impaired in cells transfected with variant CDH2 or non-transfected. Conclusion: A homozygous CDH2 allelic variant was found in one hypopituitarism patient, and the variant impaired cell aggregation function in vitro. No disease-causing variants were found in 145 other patients screened for CDH2 variants. Thus, CDH2 is a candidate gene for hypopituitarism that needs to be tested in different populations. Significance statement: A female patient with hypopituitarism was born from consanguineous parents and had a homozygous, likely pathogenic, CDH2 variant that impairs cell aggregation in vitro. No other likely pathogenic variants in CDH2 were identified in 145 hypopituitarism patients.

19.
Mol Cell Endocrinol ; 549: 111641, 2022 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-35398053

RESUMEN

Luteinizing hormone (LH) stimulates testosterone production from Leydig cells. Both LH and testosterone play important roles in spermatogenesis and male fertility. To identify LH - and testosterone - responsive transporter genes that play key roles in spermatogenesis, we performed large-scale gene expression analyses on testes obtained from adult control and Lhb knockout mice. We found a significant reduction in cystine/glutamate transporter encoding Slc7a11 mRNA in testes of Lhb null mice. We observed that Slc7a11/SLC7A11 expression was initiated pre-pubertally and developmentally regulated in mouse testis. Immunolocalization studies confirmed that SLC7A11 was mostly expressed in Sertoli cells in testes of control and germ cell-deficient mice. Western blot analyses indicated that SLC7A11 was significantly reduced in testes of mutant mice lacking either LH or androgen receptor selectively in Sertoli cells. Genetic and pharmacological rescue of Lhb knockout mice restored the testicular expression of Slc7a11 comparable to that observed in controls. Additionally, Slc7a11 mRNA was significantly suppressed upon Sertoli cell/testicular damage induced in mice by cadmium treatment. Knockdown of Slc7a11 in vitro in TM4 Sertoli cells or treatment of mice with sulfasalazine, a SLC7A11 inhibitor caused a significant reduction in intracellular cysteine and glutathione levels but glutamate content remained unchanged as determined by metabolomic analysis. Knockdown of Slc7a11 resulted in compensatory upregulation of other glutamate transporters belonging to the Slc1a family presumably to maintain intracellular glutamate levels. Collectively, our studies identified that SLC7A11 is an LH/testosterone-regulated transporter that is required for cysteine/glutathione but not glutamate homeostasis in mouse Sertoli cells.


Asunto(s)
Sistema de Transporte de Aminoácidos y+/metabolismo , Andrógenos , Células de Sertoli , Andrógenos/metabolismo , Animales , Cisteína/metabolismo , Cistina/metabolismo , Glutamatos/metabolismo , Glutatión/metabolismo , Homeostasis , Células Intersticiales del Testículo/metabolismo , Hormona Luteinizante/farmacología , Masculino , Ratones , Ratones Noqueados , ARN Mensajero/genética , ARN Mensajero/metabolismo , Células de Sertoli/metabolismo , Espermatogénesis , Testículo/metabolismo , Testosterona/farmacología
20.
Nat Commun ; 13(1): 2486, 2022 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-35513361

RESUMEN

CO2 electroreduction reaction offers an attractive approach to global carbon neutrality. Industrial CO2 electrolysis towards formate requires stepped-up current densities, which is limited by the difficulty of precisely reconciling the competing intermediates (COOH* and HCOO*). Herein, nano-crumples induced Sn-Bi bimetallic interface-rich materials are in situ designed by tailored electrodeposition under CO2 electrolysis conditions, significantly expediting formate production. Compared with Sn-Bi bulk alloy and pure Sn, this Sn-Bi interface pattern delivers optimum upshift of Sn p-band center, accordingly the moderate valence electron depletion, which leads to weakened Sn-C hybridization of competing COOH* and suitable Sn-O hybridization of HCOO*. Superior partial current density up to 140 mA/cm2 for formate is achieved. High Faradaic efficiency (>90%) is maintained at a wide potential window with a durability of 160 h. In this work, we elevate the interface design of highly active and stable materials for efficient CO2 electroreduction.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA