Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Biochem Biophys Res Commun ; 717: 150028, 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-38714016

RESUMEN

Mycoplasma pneumoniae (MP),as the most commonly infected respiratory pathogen in community-acquired pneumonia in preschool children,has becoming a prominent factor affecting children's respiratory health.Currently, there is a lack of easy, rapid, and accurate laboratory testing program for MP infection, which causes comparatively difficulty for clinical diagnostic.Here,we utilize loop-mediated isothermal amplification (LAMP) to amplify and characterize the P1 gene of MP, combined with nucleic acid lateral flow (NALF) for fast and visuallized detection of MP.Furthermore, we evaluated and analyzed the sensitivity, specificity and methodological consistency of the method.The results showed that the limit of detection(LoD) of MP-LAMP-NALF assay was down to 100 copys per reaction and there was no cross-reactivity with other pathogens infected the respiratory system. The concordance rate between MP-LAMP-NALF assay with quantitative real-time PCR was 94.3 %,which exhibiting excellent testing performance.We make superior the turnaround time of the MP-LAMP-NALF assay, which takes only about 50 min. In addition, there is no need for precision instruments and no restriction on the laboratory site.Collectively, LAMP-NALF assay targeting the P1 gene for Mycoplasma pneumoniae detection was a easy, precise and visual test which could be widely applied in outpatient and emergency departments or primary hospitals.When further optimized, it could be used as "point-of-care testing" of pathogens or multiple testing for pathogens.


Asunto(s)
Técnicas de Diagnóstico Molecular , Mycoplasma pneumoniae , Técnicas de Amplificación de Ácido Nucleico , Neumonía por Mycoplasma , Mycoplasma pneumoniae/genética , Mycoplasma pneumoniae/aislamiento & purificación , Técnicas de Amplificación de Ácido Nucleico/métodos , Humanos , Neumonía por Mycoplasma/diagnóstico , Neumonía por Mycoplasma/microbiología , Técnicas de Diagnóstico Molecular/métodos , Sensibilidad y Especificidad , Límite de Detección , ADN Bacteriano/genética
2.
Cell Mol Neurobiol ; 44(1): 35, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38630150

RESUMEN

An increasing body of research suggests that promoting microglial autophagy hinders the neuroinflammation initiated though the NLRP3 inflammasome activation in Alzheimer's disease (AD). The function of FoxG1, a crucial transcription factor involved in cell survival by regulating mitochondrial function, remains unknown during the AD process and neuroinflammation occurs. In the present study, we firstly found that Aß peptides induced AD-like neuroinflammation upregulation and downregulated the level of autophagy. Following low-dose Aß25-35 stimulation, FoxG1 expression and autophagy exhibited a gradual increase. Nevertheless, with high-concentration Aß25-35 treatment, progressive decrease in FoxG1 expression and autophagy levels as the concentration of Aß25-35 escalated. In addition, FoxG1 has a positive effect on cell viability and autophagy in the nervous system. In parallel with the Aß25-35 stimulation, we employed siRNA to decrease the expression of FoxG1 in N2A cells. A substantial reduction in autophagy level (Beclin1, LC3II, SQSTM1/P62) and a notable growth in inflammatory response (NLRP3, TNF-α, and IL-6) were observed. In addition, we found FoxG1 overexpression owned the effect on the activation of AMPK/mTOR autophagy pathway and siRNA-FoxG1 successfully abolished this effect. Lastly, FoxG1 suppressed the NLRP3 inflammasome and enhanced the cognitive function in AD-like mouse model induced by Aß25-35. Confirmed by cellular and animal experiments, FoxG1 suppressed NLRP3-mediated neuroinflammation, which was strongly linked to autophagy regulated by AMPK/mTOR. Taken together, FoxG1 may be a critical node in the pathologic progression of AD and has the potential to serve as therapeutic target.


Asunto(s)
Enfermedad de Alzheimer , Factores de Transcripción Forkhead , Inflamasomas , Animales , Ratones , Enfermedad de Alzheimer/tratamiento farmacológico , Proteínas Quinasas Activadas por AMP , Autofagia , Enfermedades Neuroinflamatorias , Proteína con Dominio Pirina 3 de la Familia NLR , ARN Interferente Pequeño , Factores de Transcripción Forkhead/antagonistas & inhibidores
3.
Int J Mol Sci ; 23(23)2022 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-36499306

RESUMEN

Strategies to enhance hippocampal precursor cells efficiently differentiate into neurons could be crucial for structural repair after neurodegenerative damage. FOXG1 has been shown to play an important role in pattern formation, cell proliferation, and cell specification during embryonic and early postnatal neurogenesis. Thus far, the role of FOXG1 in adult hippocampal neurogenesis is largely unknown. Utilizing CAG-loxp-stop-loxp-Foxg1-IRES-EGFP (Foxg1fl/fl), a specific mouse line combined with CreAAV infusion, we successfully forced FOXG1 overexpressed in the hippocampal dentate gyrus (DG) of the genotype mice. Thereafter, we explored the function of FOXG1 on neuronal lineage progression and hippocampal neurogenesis in adult mice. By inhibiting p21cip1 expression, FOXG1-regulated activities enable the expansion of the precursor cell population. Besides, FOXG1 induced quiescent radial-glia like type I neural progenitor, giving rise to intermediate progenitor cells, neuroblasts in the hippocampal DG. Through increasing the length of G1 phase, FOXG1 promoted lineage-committed cells to exit the cell cycle and differentiate into mature neurons. The present results suggest that FOXG1 likely promotes neuronal lineage progression and thereby contributes to adult hippocampal neurogenesis. Elevating FOXG1 levels either pharmacologically or through other means could present a therapeutic strategy for disease related with neuronal loss.


Asunto(s)
Células-Madre Neurales , Neurogénesis , Ratones , Animales , Neurogénesis/genética , Hipocampo/metabolismo , Células-Madre Neurales/metabolismo , Neuronas/metabolismo , Proliferación Celular , Ratones Endogámicos C57BL , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Factores de Transcripción Forkhead/genética , Factores de Transcripción Forkhead/metabolismo
4.
Biochem Biophys Res Commun ; 523(1): 159-164, 2020 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-31837802

RESUMEN

Although postpartum depression (PPD) is the leading cause of disability worldwide, its molecular mechanisms are poorly understood. Recent evidence has suggested that impaired glucocorticoid receptor (GR), the signaling of key molecules of the HPA axis, plays a key role in the behavioral and neuroendorcrine alterations of major depression. However, the role of GR in postpartum period, which following with the abrupt withdrawal of placental corticotropin releasing hormone (CRH) and resulting in a re-equilibration of the maternal HPA axis in the days of post-delivery, is still not entirely clear. Previously, a hormone-simulated pregnancy (HSP), and the subsequent 'postpartum' withdrawal in estrogen has been employed to mimic the fluctuations in estradiol associated with pregnancy and postpartum. Using the HSP model, we investigated here the effect of 'postpartum' withdrawal in estrogen as well as depression- and anxiety-like behavior by intra-hippocampal infusion with GR inhibitor-RU486. Following the successful acquisition of PPD model by withdrawal in estrogen, reduced GR expression was observed in hippocampus. Further, HSP-rats suffered intra-hippocampal RU486 infusion presented depression- and anxiety-like behavior as postpartum depression. Together, these results suggest an important, though complex, role for GR in the behavioral regulation of postpartum depression.


Asunto(s)
Depresión Posparto/tratamiento farmacológico , Mifepristona/farmacología , Receptores de Glucocorticoides/antagonistas & inhibidores , Receptores de Glucocorticoides/metabolismo , Animales , Depresión Posparto/metabolismo , Depresión Posparto/patología , Femenino , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Mifepristona/administración & dosificación , Embarazo , Ratas , Ratas Sprague-Dawley , Receptores de Glucocorticoides/genética
5.
Biochem Biophys Res Commun ; 525(4): 989-996, 2020 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-32173526

RESUMEN

Genes and environmental conditions are thought to interact in the development of postnatal brain in schizophrenia (SZ). Genome wide association studies have identified that PPARGC1A being one of the top candidate genes for SZ. We previously reported GABAergic neuron-specific PGC-1α knockout mice (Dlx5/6-Cre:PGC-1αfl/fl) presented some characteristic features of SZ. However, there is a fundamental gap of the molecular mechanism by which PGC-1α gene involved in the developmental trajectory to SZ. To explore whether PGC-1α regulates environmental factors interacting with genetic susceptibility to trigger symptom onset and disease progression, PGC-1α deficient mice were utilized to model genetic effect and an additional oxidative stress was induced by GBR injection. We confirm that PGC-1α gene deletion prolongs critical period (CP) timing, as revealed by delaying maturation of PV interneurons (PVIs), including their perineuronal nets (PNNs). Further, we confirm that gene × environment (G × E) influences CP plasticity synergistically and the interaction varies as a function of age, with the most sensitive period being at preweaning stage, and the least sensitive one at early adult age in PGC-1α deficient mice. Along this line, we find that the synergic action of G × E is available in ChABC-infusion PGC-1α KO mice, even though during the adulthood, and the neuroplasticity seems to remain open to fluctuate. Altogether, these results refine the observations made in the PGC-1α deficient mice, a potential mouse model of SZ, and illustrate how PGC-1α regulates CP plasticity via G × E interaction in the developmental trajectory to SZ.


Asunto(s)
Neuronas GABAérgicas/metabolismo , Interneuronas/metabolismo , Parvalbúminas/metabolismo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Esquizofrenia/metabolismo , Animales , Condroitina ABC Liasa/farmacología , Interacción Gen-Ambiente , Giro del Cíngulo/citología , Giro del Cíngulo/diagnóstico por imagen , Humanos , Inmunohistoquímica , Ratones , Ratones Noqueados , Microscopía Electrónica de Rastreo , Mitocondrias/metabolismo , Mitocondrias/patología , Mitocondrias/ultraestructura , Plasticidad Neuronal/genética , Plasticidad Neuronal/fisiología , Estrés Oxidativo/fisiología , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/deficiencia , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/genética , Pubertad/metabolismo , Esquizofrenia/diagnóstico por imagen , Esquizofrenia/genética , Esquizofrenia/fisiopatología , Destete
6.
J Alzheimers Dis ; 86(3): 1255-1273, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35180113

RESUMEN

BACKGROUND: Several recent findings have revealed that targeting of cell cycle reentry and (or) progression may provide an opportunity for the therapeutic intervention of Alzheimer's disease (AD). FOXG1 has been shown to play important roles in pattern formation, cell proliferation, and cell specification. Thus far, the roles of FoxG1 and its involvement in AD are largely unknown. OBJECTIVE: Our study aimed to explore the intervention effect of FOXG1 on AD pathology and its potential mechanism with a particular focus on cell cycle regulation. METHODS: We investigated the association of Foxg1 gene variants with AD-like behavioral deficits, p21 expression, neuronal apoptosis, and amyloid-ß (Aß) aggregate formation; we further determined whether targeting FOXG1-regulated cell cycle has therapeutic potential in AD. RESULTS: Paralleling AD-like behavioral abnormalities, neuronal apoptosis, and Aß deposits, a significant reduction in the expression of FOXG1 was observed in APP/PS1 mice at 6 months of age. Using the APP/PS1;Foxg1fl/fl-CreAAV mouse line, we found that FOXG1 potentially antagonized cell cycle reentry by negatively regulating the levels of p21-activated kinase (PAK3). By reducing p21cip1-mediated arrest at the G2 stage and regulating cyclin A1- and cyclin B-dependent progression patterns of the cell cycle, FOXG1 blocked neuronal apoptosis and Aß deposition. CONCLUSION: These results indicate that FOXG1 contributes to the regulation of the neuronal cell cycle, thereby affecting brain abnormalities in AD. An elevation of the FOXG1 level, either pharmacologically or through other means, could present a therapeutic strategy for AD.


Asunto(s)
Enfermedad de Alzheimer , Factores de Transcripción Forkhead , Proteínas del Tejido Nervioso , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Enfermedad de Alzheimer/terapia , Péptidos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Animales , Ciclo Celular , Modelos Animales de Enfermedad , Factores de Transcripción Forkhead/metabolismo , Humanos , Ratones , Ratones Transgénicos , Proteínas del Tejido Nervioso/metabolismo , Presenilina-1/metabolismo , Quinasas p21 Activadas/metabolismo
7.
Neurosci Lett ; 744: 135598, 2021 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-33373677

RESUMEN

Amyloid-ß (Aß) is the core component of amyloid plaques of Alzheimer's disease (AD). Recent evidence has confirmed that Aß triggers neurodegeneration by dramatically suppressing vitamin D receptor (VDR) expression. Thus far, the onset mechanisms and means of preventing AD are largely unknown. Perioxisome proliferator-activated receptor-γ coactivator (PGC-1α), as a transcriptional coactivator of VDR could protect cells against oxidative stress. Thus, upregulation of PGC-1α is a candidate therapeutic strategy for AD. To investigate the effect of PGC-1α in AD, and to illuminate the precise involvement of VDR in the neuroprotective strategy, the varies of molecular of PGC-1α and VDR were studied in APP/PS-1 double transgenic (2xTg-AD) mice at 6 months of age, significant reduction in the expression of PGC-1α and VDR was found in their hippocampus and the cortex. Besides, a specific mouse line, Dlx5/6-Cre:PGC-1αfl/fl in which the PGC-1α deficiency was limited to the hippocampus and the cortex, was used to study the target intervention of PGC-1α, decreased expression of VDR and increased oxidative damage were observed in AD-related brain regions by PGC-1α deficiency. To explore the function and therapeutic strategy of PGC-1α in AD, an adeno-associated virus (AAV) was used to induce PGC-1α overexpressed in the hippocampus of 2xTg-AD mice. Overexpressed PGC-1α results in a remarkable increase in the levels of VDR associated with a significant reduction in the expression of Aß plaques and of 8-oxo-dG in 2xTg-AD mice. These data may have ramifications for neuroprotective strategies targeting overexpression of PGC-1α in Alzheimer's disease.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/biosíntesis , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/biosíntesis , Receptores de Calcitriol/biosíntesis , Enfermedad de Alzheimer/genética , Péptidos beta-Amiloides/antagonistas & inhibidores , Péptidos beta-Amiloides/genética , Animales , Expresión Génica , Hipocampo/metabolismo , Ratones , Ratones Transgénicos , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/genética , Receptores de Calcitriol/genética
8.
Neurosci Lett ; 761: 136112, 2021 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-34265417

RESUMEN

Recent evidence has confirmed the association of glucocorticoid receptor (GR) gene variants with the "stress" endocrine axis in postpartum depression (PPD). Sirtuin 1(SIRT1) is an NAD+-dependent histone deacetylase and transcriptional enhancer of GR. However, to date, the function of the SIRT1 gene in the regulation of GR expression in PPD remains to be fully determined. A hormone-stimulated pregnancy (HSP) and subsequent "postpartum" withdrawal of estrogen was employed to mimic the fluctuations in estradiol associated with pregnancy and postpartum. We confirmed that estradiol benzoate withdrawal (EW)-rats displayed depression- and anxiety-like behaviors. These behavioral dysfunctions are associated with attenuated expression of SIRT1 and GR in the hippocampus. To assess the role of SIRT1, as well as its regulatory target directly, a selective SIRT1 activator (SRT2104) was infused into the hippocampus of EW-rats. We found that pharmacological activation of hippocampal SIRT1 blocks the development of depression-related, but not anxiety-related, phenotypes of PPD. In addition, the activation of SIRT1 leads to an increase in hippocampal GR expression in EW-rats. We further confirmed that SIRT1 physically interacts with GR in a glucocorticoid-dependent manner. Taken together, our results suggest that neuropathology in PPD is caused, at least in part, by the inhibition of the SIRT1-GR signaling pathway. Elevating SIRT1 levels, either pharmacologically or through other means, could represent a therapeutic strategy for PPD.


Asunto(s)
Depresión Posparto/metabolismo , Receptores de Glucocorticoides/metabolismo , Sirtuina 1/metabolismo , Animales , Femenino , Células HEK293 , Hipocampo/metabolismo , Humanos , Unión Proteica , Ratas , Ratas Sprague-Dawley , Receptores de Glucocorticoides/genética , Sirtuina 1/genética , Regulación hacia Arriba
9.
Brain Res Bull ; 157: 128-139, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32057952

RESUMEN

Interneurons not only contribute to the global balance of activity in cortical networks but also mediate the precise gating of information through specific proteins. Accumulating evidence demonstrates that peroxisome-proliferator-activated receptor-gamma co-activator 1 alpha (PGC-1α) is concentrated in inhibitory interneurons and that it plays an important role in neuropsychiatric diseases. However, the functions of the transcriptional coactivator PGC-1α in sensorimotor gating, short-term habituation and spatial reference memory are still not entirely clear. To investigate the precise involvement of PGC-1α in the progression of psychiatric disorders, we first generated PGC-1α conditional knockout mice through transgenic expression of Cre recombinase under the control of dlx5/6 promoter, Cre-mediated excision events occurred specifically in γ-amino-butyric-acid-(GABA)ergic neurons. Short-term habituation and spatial reference memory in Dlx5/6-Cre::PGC-1αfl/fl mice were evaluated using the novel object recognition test and the Morris water maze test, and sensorimotor gating was measured by prepulse inhibition of the acoustic startle reflex. Protein expression of parvalbumin (PV) in specific brain regions was studied by western blotting, immunofluorescence and immunohistochemistry. Here, we show that mice lacking the PGC-1α gene in GABAergic neurons exhibit deficits in short-term habituation, hyperactivity, reduced prepulse inhibition and exaggerated startle reactivity but normal associative spatial reference memory. In particular, these mice display aberrant salience, whereby more attention is paid to a further copy of the original object (now familiar) (relative to the first presentation of the original object, and relative to the presentation of the novel object). These behavioral dysfunctions were associated with decreased PV expression in the cortex (including somatosensory and motor cortex) as well as in the hippocampus, especially in its CA1 and CA3 regions. Together, these findings draw attention to a hyper-response phenotype of PGC-1α conditional knockout mice and indicate that PGC-1α is a novel regulator of gene expression and function in PV-positive interneurons and a potential therapeutic target for psychiatric disorders associated with PGC-1α dysregulation.


Asunto(s)
Neuronas GABAérgicas/metabolismo , Habituación Psicofisiológica/fisiología , Interneuronas/fisiología , Corteza Motora/metabolismo , Animales , Hipocampo/metabolismo , Potenciales Postsinápticos Inhibidores/fisiología , Inhibición Neural/fisiología , Parvalbúminas/metabolismo , Factores de Transcripción/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA