Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 712
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Plant Cell ; 35(4): 1259-1280, 2023 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-36653170

RESUMEN

Nitrogen (N) and potassium (K) are essential macronutrients for plants. Sufficient N and K uptake from the environment is required for successful growth and development. However, how N and K influence each other at the molecular level in plants is largely unknown. In this study, we found loss-of-function mutation in SLAH3 (SLAC1 HOMOLOGUE 3), encoding a NO3- efflux channel in Arabidopsis thaliana, enhanced tolerance to high KNO3 concentrations. Surprisingly, slah3 mutants were less sensitive to high K+ but not NO3-. Addition of NO3- led to reduced phenotypic difference between wild-type and slah3 plants, suggesting SLAH3 orchestrates NO3--K+ balance. Non-invasive Micro-test Technology analysis revealed reduced NO3- efflux and enhanced K+ efflux in slah3 mutants, demonstrating that SLAH3-mediated NO3- transport and SLAH3-affected K+ flux are critical in response to high K +. Further investigation showed that two K+ efflux channels, GORK (GATED OUTWARDLY-RECTIFYING K+ CHANNEL) and SKOR (STELAR K+ OUTWARD RECTIFIER), interacted with SLAH3 and played key roles in high K+ response. The gork and skor mutants were slightly more sensitive to high K+ conditions. Less depolarization occurred in slah3 mutants and enhanced depolarization was observed in gork and skor mutants upon K+ treatment, suggesting NO3-/K+ efflux-mediated membrane potential regulation is involved in high K+ response. Electrophysiological results showed that SLAH3 partially inhibited the activities of GORK and SKOR in Xenopus laevis oocytes. This study revealed that the anion channel SLAH3 interacts with the potassium channels GORK and SKOR to modulate membrane potential by coordinating N-K balance.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Canales de Potasio/genética , Proteínas de Arabidopsis/metabolismo , Potenciales de la Membrana , Aniones/metabolismo , Homeostasis , Plantas/metabolismo , Potasio/metabolismo , Canales Iónicos/genética
2.
Nano Lett ; 24(20): 6084-6091, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38717110

RESUMEN

Chiral perovskites play a pivotal role in spintronics and optoelectronic systems attributed to their chiral-induced spin selectivity (CISS) effect. Specifically, they allow for spin-polarized charge transport in spin light-emitting diodes (LEDs), yielding circularly polarized electroluminescence at room temperature without external magnetic fields. However, chiral lead bromide-based perovskites have yet to achieve high-performance green emissive spin-LEDs, owing to limited CISS effects and charge transport. Herein, we employ dimensional regulation and Sn2+-doping to optimize chiral bromide-based perovskite architecture for green emissive spin-LEDs. The optimized (PEA)x(S/R-PRDA)2-xSn0.1Pb0.9Br4 chiral perovskite film exhibits an enhanced CISS effect, higher hole mobility, and better energy level alignment with the emissive layer. These improvements allow us to fabricate green emissive spin-LEDs with an external quantum efficiency (EQE) of 5.7% and an asymmetry factor |gCP-EL| of 1.1 × 10-3. This work highlights the importance of tailored perovskite architectures and doping strategies in advancing spintronics for optoelectronic applications.

3.
J Lipid Res ; 65(2): 100499, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38218337

RESUMEN

Ferroptosis is a novel cell death mechanism that is mediated by iron-dependent lipid peroxidation. It may be involved in atherosclerosis development. Products of phospholipid oxidation play a key role in atherosclerosis. 1-palmitoyl-2-glutaroyl-sn-glycero-3-phosphocholine (PGPC) is a phospholipid oxidation product present in atherosclerotic lesions. It remains unclear whether PGPC causes atherosclerosis by inducing endothelial cell ferroptosis. In this study, human umbilical vein endothelial cells (HUVECs) were treated with PGPC. Intracellular levels of ferrous iron, lipid peroxidation, superoxide anions (O2•-), and glutathione were detected, and expression of fatty acid binding protein-3 (FABP3), glutathione peroxidase 4 (GPX4), and CD36 were measured. Additionally, the mitochondrial membrane potential (MMP) was determined. Aortas from C57BL6 mice were isolated for vasodilation testing. Results showed that PGPC increased ferrous iron levels, the production of lipid peroxidation and O2•-, and FABP3 expression. However, PGPC inhibited the expression of GPX4 and glutathione production and destroyed normal MMP. These effects were also blocked by ferrostatin-1, an inhibitor of ferroptosis. FABP3 silencing significantly reversed the effect of PGPC. Furthermore, PGPC stimulated CD36 expression. Conversely, CD36 silencing reversed the effects of PGPC, including PGPC-induced FABP3 expression. Importantly, E06, a direct inhibitor of the oxidized 1-palmitoyl-2-arachidonoyl-phosphatidylcholine IgM natural antibody, inhibited the effects of PGPC. Finally, PGPC impaired endothelium-dependent vasodilation, ferrostatin-1 or FABP3 inhibitors inhibited this impairment. Our data demonstrate that PGPC impairs endothelial function by inducing endothelial cell ferroptosis through the CD36 receptor to increase FABP3 expression. Our findings provide new insights into the mechanisms of atherosclerosis and a therapeutic target for atherosclerosis.


Asunto(s)
Aterosclerosis , Ciclohexilaminas , Ferroptosis , Fenilendiaminas , Animales , Ratones , Humanos , Fosfolípidos , Fosforilcolina , Éteres Fosfolípidos/metabolismo , Éteres Fosfolípidos/farmacología , Ratones Endogámicos C57BL , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Endotelio/metabolismo , Glutatión/metabolismo , Hierro/metabolismo , Proteína 3 de Unión a Ácidos Grasos
4.
Small ; 20(26): e2310731, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38247187

RESUMEN

The development of robust adhesive, conductive, and flexible materials has garnered significant attention in the realm of human-machine interface and electronic devices. Conventional preparation methods to achieve these exceptional properties rely on incorporating highly polar raw materials, multiple components, or solvents. However, the overexposure of functional groups and the inherent toxicity of organic solvents often render gels non-stick or potentially biocompatible making them unsuitable for human-contact devices. In this study, a straightforward three-step strategy is devised for preparing responsive adhesive gels without complex components. Structurally conductive poly(N-(2-hydroxyethyl)-acrylamide-co-p-styrene sulfonate hydrate) (PHEAA-NaSS) gels are synthesized by integrating ionic and hydrophilic networks with distinct solvent effects. Initially, the in-suit formed PHEAA-NaSS networks are activated by dimethyl sulfoxide, which substantially increases intramolecular hydrogen bonding and enhances the matrix stretchability and interfacial adhesion. Subsequently, ethanol exchange reduced solvent impact and led to a compact network that limited surface exposure of ionic and hydrophilic groups, resulting in nonstick, robust for convenient storage. Finally, upon contacting with water, the network demonstrates rehydration, resulting in favorable adhesion, biocompatibility, and conductivity. The proposed PHEAA-NaSS/W gels can stably and reliably capture joint motion and electrophysiological signals. Furthermore, this uncomplicated gel preparation method is also applicable to other electrolyte monomers.


Asunto(s)
Materiales Biocompatibles , Conductividad Eléctrica , Geles , Solventes , Dispositivos Electrónicos Vestibles , Solventes/química , Materiales Biocompatibles/química , Geles/química , Humanos , Adhesivos/química
5.
Chemistry ; 30(14): e202303632, 2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38150289

RESUMEN

The lithium-ion batteries (LIBs) with high nickel cathode have high specific energy, but as the nickel content in the cathode active material increases, batteries are suffering from temperature limitations, unstable performance, and transition metal dissolution during long cycling. In this work, a functional electrolyte with P-phenyl diisothiocyanate (PDITC) additive is developed to stabilize the performance of LiNi0.8 Co0.1 Mn0.1 O2 (NCM811)/graphite LIBs over a wide temperature range. Compared to the batteries without the additive, the capacity retention of the batteries with PDITC-containing electrolyte increases from 23 % to 74 % after 1400 cycles at 25 °C, and from 15 % to 85 % after 300 cycles at 45 °C. After being stored at 60 °C, the capacity retention rate and capacity recovery rate of the battery are also improved. In addition, the PDITC-containing battery has a higher discharge capacity at -20 °C, and the capacity retention rate increases from 79 % to 90 % after 500 cycles at 0 °C. Both theoretical calculations and spectroscopic results demonstrate that PDITC is involved in constructing a dense interphase, inhibiting the decomposition of the electrolyte and reducing the interfacial impedance. The application of PDITC provides a new strategy to improve the wide-temperature performance of the NCM811/graphite LIBs.

6.
Arch Microbiol ; 206(7): 313, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38900186

RESUMEN

Phenols are highly toxic chemicals that are extensively used in industry and produce large amounts of emissions. Notably, phenols released into the soil are highly persistent, causing long-term harm to human health and the environment. In this study, a gram-positive, aerobic, and rod-shaped bacterial strain, Z13T, with efficient phenol degradation ability, was isolated from the soil of sugarcane fields. Based on the physiological properties and genomic features, strain Z13T is considered as a novel species of the genus Rhodococcus, for which the name Rhodococcus sacchari sp. nov. is proposed. The type strain is Z13T (= CCTCC AB 2022327T = JCM 35797T). This strain can use phenol as its sole carbon source. Z13T was able to completely degrade 1200 mg/L phenol within 20 h; the maximum specific growth rate was µmax = 0.93174 h-1, and the maximum specific degradation rate was qmax = 0.47405 h-1. Based on whole-genome sequencing and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, strain Z13T contains a series of phenol degradation genes, including dmpP, CatA, dmpB, pcaG, and pcaH, and can metabolize aromatic compounds. Moreover, the potential of strain Z13T for soil remediation was investigated by introducing Z13T into simulated phenol-contaminated soil, and the soil microbial diversity was analyzed. The results showed that 100% of the phenol in the soil was removed within 7.5 d. Furthermore, microbial diversity analysis revealed an increase in the relative species richness of Oceanobacillus, Chungangia, and Bacillus.


Asunto(s)
Biodegradación Ambiental , Fenol , Filogenia , ARN Ribosómico 16S , Rhodococcus , Microbiología del Suelo , Contaminantes del Suelo , Rhodococcus/metabolismo , Rhodococcus/genética , Rhodococcus/clasificación , Rhodococcus/crecimiento & desarrollo , Rhodococcus/aislamiento & purificación , Contaminantes del Suelo/metabolismo , Fenol/metabolismo , ARN Ribosómico 16S/genética , Saccharum/metabolismo , Saccharum/microbiología , Saccharum/crecimiento & desarrollo , Suelo/química , Genoma Bacteriano
7.
Environ Sci Technol ; 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38934332

RESUMEN

Environmentally benign cerium-based catalysts are promising alternatives to toxic vanadium-based catalysts for controlling NOx emissions via selective catalytic reduction (SCR), but conventional cerium-based catalysts unavoidably suffer from SO2 poisoning in low-temperature SCR. We develop a strongly sulfur-resistant Ce1+1/TiO2 catalyst by spatially confining Ce atom pairs to different anchoring sites of anatase TiO2(001) surfaces. Experimental results combined with theoretical calculations demonstrate that strong electronic interactions between the paired Ce atoms upshift the lowest unoccupied states to an energy level higher than the highest occupied molecular orbital (HOMO) of SO2 so as to be catalytically inert in SO2 oxidation but slightly lower than HOMO of NH3 so that Ce1+1/TiO2 has desired ability toward NH3 activation required for SCR. Hence, Ce1+1/TiO2 shows higher SCR activity and excellent stability in the presence of SO2 at low temperatures with respect to supported single Ce atoms. This work provides a general strategy to develop sulfur-resistant catalysts by tuning the electronic states of active sites for low-temperature SCR, which has implications for practical applications with energy-saving requirements.

8.
World J Surg ; 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38955808

RESUMEN

BACKGROUND: The superiority between remimazolam and propofol for anesthesia is controversial in elderly patients (≥60 years). This meta-analysis aimed to systematically compare anesthetic effect and safety profile between remimazolam and propofol in elderly patients under any surgery. METHODS: Cochrane Library, Web of Science, and PubMed were searched until December 25, 2023 for relevant randomized controlled trials. RESULTS: Ten studies with 806 patients receiving remimazolam (experimental group) and 813 patients receiving propofol (control group) were included. Time to loss of consciousness [standard mean difference (SMD) (95% confidence interval (CI): 1.347 (-0.362, 3.055), p = 0.122] and recovery time [SMD (95% CI): -0.022 (-0.300, 0.257), p = 0.879] were similar between experimental and control groups. Mean arterial pressure at baseline minus 1 min after induction [SMD (95% CI): -1.800 (-3.250, -0.349), p = 0.015], heart rate at baseline minus 1 min after induction [SMD (95% CI): -1.041 (-1.537, -0.545), p < 0.001], incidences of hypoxemia [relative risk (RR) (95% CI): 0.247 (0.138, 0.444), p < 0.001], respiratory depression [RR (95% CI): 0.458 (0.300, 0.700), p < 0.001], bradycardia [RR (95% CI): 0.409 (0.176, 0.954), p = 0.043], hypotension [RR (95% CI): 0.415 (0.241, 0.714), p = 0.007], and injection pain [RR (95% CI): 0.172 (0.113, 0.263), p < 0.001] were lower in the experimental group compared to the control group. Postoperative nausea and vomiting was not different between groups [RR (95% CI): 1.194 (0.829, 1.718), p = 0.341]. Moreover, this meta-analysis displayed a low risk of bias, minimal publication bias, and good robustness. CONCLUSION: Remimazolam shows comparative anesthetic effect and better safety profile than propofol in elderly patients under any surgery.

9.
J Neuroeng Rehabil ; 21(1): 91, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38812014

RESUMEN

BACKGROUND: The most challenging aspect of rehabilitation is the repurposing of residual functional plasticity in stroke patients. To achieve this, numerous plasticity-based clinical rehabilitation programs have been developed. This study aimed to investigate the effects of motor imagery (MI)-based brain-computer interface (BCI) rehabilitation programs on upper extremity hand function in patients with chronic hemiplegia. DESIGN: A 2010 Consolidated Standards for Test Reports (CONSORT)-compliant randomized controlled trial. METHODS: Forty-six eligible stroke patients with upper limb motor dysfunction participated in the study, six of whom dropped out. The patients were randomly divided into a BCI group and a control group. The BCI group received BCI therapy and conventional rehabilitation therapy, while the control group received conventional rehabilitation only. The Fugl-Meyer Assessment of the Upper Extremity (FMA-UE) score was used as the primary outcome to evaluate upper extremity motor function. Additionally, functional magnetic resonance imaging (fMRI) scans were performed on all patients before and after treatment, in both the resting and task states. We measured the amplitude of low-frequency fluctuation (ALFF), regional homogeneity (ReHo), z conversion of ALFF (zALFF), and z conversion of ReHo (ReHo) in the resting state. The task state was divided into four tasks: left-hand grasping, right-hand grasping, imagining left-hand grasping, and imagining right-hand grasping. Finally, meaningful differences were assessed using correlation analysis of the clinical assessments and functional measures. RESULTS: A total of 40 patients completed the study, 20 in the BCI group and 20 in the control group. Task-related blood-oxygen-level-dependent (BOLD) analysis showed that when performing the motor grasping task with the affected hand, the BCI group exhibited significant activation in the ipsilateral middle cingulate gyrus, precuneus, inferior parietal gyrus, postcentral gyrus, middle frontal gyrus, superior temporal gyrus, and contralateral middle cingulate gyrus. When imagining a grasping task with the affected hand, the BCI group exhibited greater activation in the ipsilateral superior frontal gyrus (medial) and middle frontal gyrus after treatment. However, the activation of the contralateral superior frontal gyrus decreased in the BCI group relative to the control group. Resting-state fMRI revealed increased zALFF in multiple cerebral regions, including the contralateral precentral gyrus and calcarine and the ipsilateral middle occipital gyrus and cuneus, and decreased zALFF in the ipsilateral superior temporal gyrus in the BCI group relative to the control group. Increased zReHo in the ipsilateral cuneus and contralateral calcarine and decreased zReHo in the contralateral middle temporal gyrus, temporal pole, and superior temporal gyrus were observed post-intervention. According to the subsequent correlation analysis, the increase in the FMA-UE score showed a positive correlation with the mean zALFF of the contralateral precentral gyrus (r = 0.425, P < 0.05), the mean zReHo of the right cuneus (r = 0.399, P < 0.05). CONCLUSION: In conclusion, BCI therapy is effective and safe for arm rehabilitation after severe poststroke hemiparesis. The correlation of the zALFF of the contralateral precentral gyrus and the zReHo of the ipsilateral cuneus with motor improvements suggested that these values can be used as prognostic measures for BCI-based stroke rehabilitation. We found that motor function was related to visual and spatial processing, suggesting potential avenues for refining treatment strategies for stroke patients. TRIAL REGISTRATION: The trial is registered in the Chinese Clinical Trial Registry (number ChiCTR2000034848, registered July 21, 2020).


Asunto(s)
Interfaces Cerebro-Computador , Imágenes en Psicoterapia , Imagen por Resonancia Magnética , Rehabilitación de Accidente Cerebrovascular , Accidente Cerebrovascular , Extremidad Superior , Humanos , Masculino , Rehabilitación de Accidente Cerebrovascular/métodos , Femenino , Persona de Mediana Edad , Extremidad Superior/fisiopatología , Imágenes en Psicoterapia/métodos , Accidente Cerebrovascular/fisiopatología , Accidente Cerebrovascular/complicaciones , Anciano , Adulto , Imaginación/fisiología , Corteza Cerebral/diagnóstico por imagen , Corteza Cerebral/fisiopatología
10.
Phytochem Anal ; 35(4): 733-753, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38219286

RESUMEN

INTRODUCTION: Zishui-Qinggan decoction (ZQD) is a classical traditional Chinese medicine formula (TCMF) for alleviating menopausal symptoms (MPS) induced by endocrine therapy in breast cancer patients. In the production of TCMF modern preparations, ethanol precipitation (EP) is a commonly but not fully verified refining process. OBJECTIVES: Chemical profiling/serum pharmacochemistry and network pharmacology approaches were integrated for exploring the rationality of the EP process in the production of ZQD modern preparations. MATERIAL AND METHODS: Ultra-performance liquid chromatography-quadrupole time-of-flight tandem mass spectrometry (UPLC-QTOF-MS/MS) was applied to identify the chemical profiles and absorbed components of ZQD. Network pharmacology was used to identify targets and pathways related to MPS-relieving efficacy. RESULTS: The chemicals of ZQDs without/with EP process (referred to as ZQD-W and ZQD-W-P, respectively) were qualitatively similar with 89 and 87 components identified, respectively, but their relative contents were different; 51 components were detectable in the serum of rats orally administered with ZQD-W, whereas only 19 were detected in that administered with ZQD-W-P. Key targets, such as AKT1, and pathways, such as the PI3K-Akt signalling pathway, affected by ZQD-W and ZQD-W-P were similar, while the neuroactive ligand-receptor interaction pathway among others and the MAPK signalling pathway among others were specific pathways affected by ZQD-W and ZQD-W-P, respectively. The specifically absorbed components of ZQD-W could combine its specific key targets. CONCLUSION: The EP process quantitatively altered the chemical profiles of ZQD, subsequently affected the absorbed components of ZQD, and then affected the key targets and pathways of ZQD for relieving MPS. The EP process might result in variation of the MPS-relieving efficacy of ZQD, which deserves further in vivo verification.


Asunto(s)
Medicamentos Herbarios Chinos , Etanol , Farmacología en Red , Espectrometría de Masas en Tándem , Medicamentos Herbarios Chinos/química , Espectrometría de Masas en Tándem/métodos , Cromatografía Líquida de Alta Presión/métodos , Animales , Etanol/química , Ratas Sprague-Dawley , Ratas , Precipitación Química , Medicina Tradicional China
11.
Nano Lett ; 23(8): 3385-3393, 2023 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-37052258

RESUMEN

Lead halide perovskite nanocrystals (LHP NCs) are regarded as promising emitters for next-generation ultrahigh-definition displays due to their high color purity and wide color gamut. Recently, the external quantum efficiency (EQE) of LHP NC based light-emitting diodes (PNC LEDs) has been rapidly improved to a level required by practical applications. However, the poor operational stability of the device, caused by halide ion migration at the grain boundary of LHP NC thin films, remains a great challenge. Herein, we report a resurfacing strategy via pseudohalogen ions to mitigate detrimental halide ion migration, aiming to stabilize PNC LEDs. We employ a thiocyanate solution processed post-treatment method to efficiently resurface CsPbBr3 NCs and demonstrate that the thiocyanate ions can effectively inhibit bromide ion migration in LHP NC thin films. Owing to thiocyanate resurfacing, we fabricated LEDs with a high EQE of 17.3%, a maximum brightness of 48000 cd m-2, and an excellent operation half-life time.

12.
Omega (Westport) ; : 302228241254001, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38744535

RESUMEN

The number of parents in China who have lost their only child, referred to as shidu parents, currently exceeds one million and is increasing by approximately 76,000 annually. Shidu parents face a unique challenge in long-term care, primarily stemming from the sudden and tragic loss of their only child, which leads to a substantial decrease in their social support network. A multi-stage, stratified, and cluster sampling method was employed across various economic belts. Linear regression analysis was utilized to examine factors associated with the social support status of shidu and non-shidu parents. The level of social support decreases as the severity of depression increases. Shidu parents with grandchildren tend to have good social support. The city of Hangzhou exhibits relatively high levels of social support. Married individuals typically report higher levels of social support. It is recommended to prioritize shidu parents without grandchildren as a primary focus for government and societal support. Key recommendations include strengthening social skills training and developing social support networks. Drive economic development, particularly in relatively underdeveloped regions. Strengthen social organizations and community development. Enhancing access to support services, leveraging technology, and encouraging volunteerism for non-married parents.

13.
J Gene Med ; 25(2): e3462, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36346049

RESUMEN

BACKGROUND: Diabetic foot ulcer (DFU) is a frequently diagnosed complication of diabetes, and remains a heathcare burden worldwide. However, the pathogenesis of DFU is still largely unclear. The objective of this study is to delineate the function and underlying mechanism of lncRNA antisense non coding RNA in the INK4 locus (ANRIL) in endothelial progenitor cells (EPCs) and DFU mice. METHODS: The DFU mouse model was established, and EPCs were subjected to high glucose (HG) treatment to mimic diabetes. qRT-PCR or western blot was employed to detected the expression of ANRIL, HIF1A, FUS and VEGFA. CCK-8 and Annexin V/PI staining were used to monitor cell proliferation and apoptosis. Wound healing, Transwell invasion and tube formation assays were conducted to assess cell migration, invasion and angiogenesis, respectively. The association between ANRIL and FUS was verified by RNA pull-down and RIP assays. Luciferase and ChIP assays were employed to investigate HIF1A-mediated transcriptional regulation of VEGFA and ANRIL. The histological alterations of DFU wound healing were observed by H&E and Masson staining. RESULTS: ANRIL was downregulated in peripheral blood samples of DFU patients, DFU mice and HG-treated EPCs. Mechanistically, ANRIL regulated HIFA mRNA stability via recruiting FUS. VEGFA and ANRIL were transcriptionally regulated by HIF1A. Functional experiments revealed that HG suppressed EPC proliferation, migration, invasion and tube formation, but promoted apoptosis via ANRIL/HIF1A axis. ANRIL accelerated DFU wound healing via modulating HIF1A expression in vivo. CONCLUSION: ANRIL accelerated wound healing in DFU via modulating HIF1A/VEGFA signaling in a FUS-dependent manner.


Asunto(s)
Diabetes Mellitus , Pie Diabético , MicroARNs , ARN Largo no Codificante , Ratones , Animales , Pie Diabético/genética , Pie Diabético/metabolismo , Pie Diabético/terapia , MicroARNs/genética , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Cicatrización de Heridas/genética , Transducción de Señal , Proliferación Celular/genética
14.
Mol Genet Genomics ; 298(3): 669-682, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36964802

RESUMEN

High myopia (HM) is a leading cause of visual impairment in the world. To expand the genotypic and phenotypic spectra of HM in the Chinese population, we investigated genetic variations in a cohort of 113 families with nonsyndromic early-onset high myopia from northwestern China by whole-exome sequencing, with focus on 17 known genes. Sixteen potentially pathogenic variants predicted to affect protein function in eight of seventeen causative genes for HM in fifteen (13.3%) families were revealed, including seven novel variants, c.767 + 1G > A in ARR3, c.3214C > A/p.H1072N, and c.2195C > T/p.A732V in ZNF644, c.1270G > T/p.V424L in CPSF1, c.1918G > C/p.G640R and c.2786T > G/p.V929G in XYLT1, c.601G > C/p.E201Q in P4HA2; six rare variants, c.799G > A/p.E267K in NDUFAF7, c.1144C > T/p.R382W in TNFRSF21, c.1100C > T/p.P367L in ZNF644, c.3980C > T/p.S1327L in CPSF1, c.145G > A/p.E49K and c.325G > T/p.G109W in SLC39A5; and three known variants, c.2014A > G/p.S672G and c.3261A > C/p.E1087D in ZNF644, c.605C > T/p.P202L in TNFRSF21. Ten of them were co-segregated with HM. The mean (± SD) examination age of these 15 probands was 14.7 (± 11.61) years. The median spherical equivalent was - 9.50 D (IQ - 8.75 ~ - 12.00) for the right eye and - 11.25 D (IQ - 9.25 ~ - 14.13) for the left eye. The median axial length was 26.67 mm (IQ 25.83 ~ 27.13) for the right eye and 26.25 mm (IQ 25.97 ~ 27.32) for the left eye. These newly identified genetic variations not only broaden the genetic and clinical spectra, but also offer convincing evidence that the genes ARR3, NDUFAF7, TNFRSF21, and ZNF644 contribute to hereditable HM. This work improves further understanding of molecular mechanism of HM.


Asunto(s)
Miopía , Humanos , Preescolar , Niño , Adolescente , Adulto Joven , Adulto , Miopía/genética , Mutación , Genotipo , China/epidemiología , Linaje
15.
Microb Pathog ; 180: 106112, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37059211

RESUMEN

Sepsis is a systemic infection affects several organs, which needs novel therapy for the management of it, thus protective effect of Rhoifolin was estimated against sepsis. Cecal ligation and puncture (CLP) method was used to induce sepsis and thereafter mice were treated with rhoifolin (20 and 40 mg/kg, i.p.) for one week. Food intake and survival rate was determined sepsis mice, moreover liver function test and cytokines was estimated in the serum of sepsis mice. In the lung tissue homogenate, oxidative stress parameters were determined, histopathological analysis was performed in liver and lung tissue of sepsis mice. Food intake and percentage of survival was improved in rhoifolin treated group than sham group. Level of liver function enzyme and cytokine was reduced significantly in the serum of rhoifolin treated sepsis mice. Treatment with rhoifolin ameliorates the altered oxidative stress parameters, and mRNA expression of Toll-like receptor 4 (TLR-4) in lung tissue of sepsis mice. Histopathological changes were also reverse in rhoifolin treated group than sham group of mice. In conclusion, result of report indicates Rhoifolin treatment reduces oxidative stress and inflammation in CLP induced sepsis mice, as it regulates TLR4/MyD88/NF-κB pathway.


Asunto(s)
Hígado , Sepsis , Ratones , Animales , Hígado/patología , Inflamación/patología , Citocinas/metabolismo , Punciones , Flavonoides/farmacología , Sepsis/tratamiento farmacológico , Sepsis/metabolismo , Ciego/patología , Modelos Animales de Enfermedad
16.
J Biol Inorg Chem ; 28(7): 627-641, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37523103

RESUMEN

A series of Ni(II) sandwich-like coordinated compounds were synthesized by the reaction of nickel dichloride and ten 4'-(4-substituent phenyl)-2',2':6',2″-terpyridine ligands, and their structures were confirmed by elemental analysis, FT-IR, ESI-MS, solid state ultraviolet spectroscopy and X-ray single crystal diffraction analysis. Three human cancer cell lines and a normal human cell line were used for anti-proliferation potential study: human lung cancer cell line (A549), human esophageal cancer cell line (Eca-109), human liver cancer cells (Bel-7402) and normal human liver cells (HL-7702). The results show that these nickel complexes possess good inhibitory effects on the cancer cells, outperforming the commonly used clinical chemotherapy drug cisplatin. Especially, complexes 3 (-methoxyl) and 7 (-fluoro) have strong inhibitory ability against Eca-109 cell line with IC50 values of 0.223 µM and 0.335 µM, complexes 4 and 6 showed certain cell selectivity, and complex 6 can inhibit cancer cells and slightly poison normal cells when the concentration was controlled. The ability of these complexes binding to CT-DNA was studied by UV titration and CD spectroscopy, and CD spectroscopy was also used to study the secondary structural change of BSA under the action of the complexes. The binding of these complexes with DNA, DNA-Topo I and bovine serum protein has been simulated by molecular docking software, and the docking results and optimal binding conformation data showed that they interacted with DNA in the mode of embedded binding, which is consistent with the experimental results. These complexes are more inclined to move to the cleavage site when docking with DNA-Topo I, so as to play a role of enzyme cleavage, while BSA promotes the action of the complexes by binding to effective binding sites.


Asunto(s)
Antineoplásicos , Complejos de Coordinación , Humanos , Níquel/farmacología , Níquel/química , Simulación del Acoplamiento Molecular , Ligandos , Espectroscopía Infrarroja por Transformada de Fourier , ADN/química , Complejos de Coordinación/química , Antineoplásicos/química , Albúmina Sérica Bovina/metabolismo
17.
Cells Tissues Organs ; 212(1): 64-73, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-35008091

RESUMEN

Traditionally, tissue-specific organoids are generated as 3D aggregates of stem cells embedded in Matrigel or hydrogels, and the aggregates eventually end up a spherical shape and suspended in the matrix. Lack of geometrical control of organoid formation makes these spherical organoids limited for modeling the tissues with complex shapes. To address this challenge, we developed a new method to generate 3D spatial-organized cardiac organoids from 2D micropatterned human induced pluripotent stem cell (hiPSC) colonies, instead of directly from 3D stem cell aggregates. This new approach opens the possibility to create cardiac organoids that are templated by 2D non-spherical geometries, which potentially provides us a deeper understanding of biophysical controls on developmental organogenesis. Here, we designed 2D geometrical templates with quadrilateral shapes and pentagram shapes that had same total area but different geometrical shapes. Using this templated substrate, we grew cardiac organoids from hiPSCs and collected a series of parameters to characterize morphological and functional properties of the cardiac organoids. In quadrilateral templates, we found that increasing the aspect ratio impaired cardiac tissue 3D self-assembly, but the elongated geometry improved the cardiac contractile functions. However, in pentagram templates, cardiac organoid structure and function were optimized with a specific geometry of an ideal star shape. This study will shed a light on "organogenesis-by-design" by increasing the intricacy of starting templates from external geometrical cues to improve the organoid morphogenesis and functionality.


Asunto(s)
Células Madre Pluripotentes Inducidas , Humanos , Organoides , Corazón
18.
Crit Rev Food Sci Nutr ; 63(31): 10792-10813, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-35748363

RESUMEN

Anthocyanins, which are the labile flavonoid pigments widely distributed in many fruits, vegetables, cereal grains, and flowers, are receiving intensive interest for their potential health benefits. Proteins are important food components from abundant sources and present high binding affinity for small dietary compounds, e.g., anthocyanins. Protein-anthocyanin interactions might occur during food processing, ingestion, digestion, and bioutilization, leading to significant changes in the structure and properties of proteins and anthocyanins. Current knowledge of protein-anthocyanin interactions and their contributions to functions and bioactivities of anthocyanin-containing foods were reviewed. Binding characterization of dietary protein-anthocyanins complexes is outlined. Advances in understanding the structure-affinity relationship of dietary protein-anthocyanin interaction are critically discussed. The associated properties of protein-anthocyanin complexes are considered in an evaluation of functional and nutritional values.


Asunto(s)
Antocianinas , Frutas , Antocianinas/análisis , Frutas/química , Verduras/química , Dieta , Proteínas en la Dieta/análisis
19.
Helicobacter ; 28(3): e12960, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37042045

RESUMEN

BACKGROUND: Geographic differences exist in the antibiotic resistance patterns of Helicobacter pylori. Personalized treatment regimens based on local or individual resistance data are essential. We evaluated the current status of H. pylori resistance in Ningxia, analyzed resistance-related factors, and assessed the concordance of phenotypic and genotypic resistance. METHODS: Strains were isolated from the gastric mucosa of patients infected with H. pylori in Ningxia and relevant clinical information was collected. Phenotypic antibiotic susceptibility assays (Kirby-Bauer disk diffusion) and antibiotic resistance gene detection (Sanger sequencing) were performed. RESULTS: We isolated 1955 H. pylori strains. The resistance rates of H. pylori to amoxicillin, levofloxacin, clarithromycin, and metronidazole were 0.9%, 42.4%, 40.4%, and 94.2%, respectively. Only five tetracycline-resistant and one furazolidone-resistant strain were identified. Overall, 3.3% of the strains were sensitive to all six antibiotics. Multidrug-resistant strains accounted for 22.9%, of which less than 20% were from Wuzhong. Strains isolated from women and patients with nonulcerative disease had higher rates of resistance to levofloxacin and clarithromycin. Higher rates of resistance to metronidazole, levofloxacin, and clarithromycin were observed in the older age group than in the younger age group. The kappa coefficients of phenotypic resistance and genotypic resistance for levofloxacin and clarithromycin were 0.830 and 0.809, respectively, whereas the remaining antibiotics showed poor agreement. CONCLUSION: H. pylori antibiotic resistance is severe in Ningxia. Therefore, furazolidone, amoxicillin, and tetracycline are better choices for the empirical therapy of H. pylori infection in this region. Host sex, age, and the presence of ulcerative diseases may affect antibiotic resistance of the bacteria. Personalized therapy based on genetic testing for levofloxacin and clarithromycin resistance may be a future direction for the eradication therapy of H. pylori infection in Ningxia.


Asunto(s)
Infecciones por Helicobacter , Helicobacter pylori , Humanos , Femenino , Anciano , Claritromicina/farmacología , Claritromicina/uso terapéutico , Metronidazol/farmacología , Metronidazol/uso terapéutico , Levofloxacino/farmacología , Levofloxacino/uso terapéutico , Infecciones por Helicobacter/tratamiento farmacológico , Infecciones por Helicobacter/microbiología , Estudios Retrospectivos , Furazolidona/uso terapéutico , Pruebas de Sensibilidad Microbiana , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Amoxicilina/uso terapéutico , Tetraciclina/farmacología , Tetraciclina/uso terapéutico , Farmacorresistencia Microbiana , Farmacorresistencia Bacteriana
20.
Environ Sci Technol ; 57(20): 7858-7866, 2023 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-37161886

RESUMEN

Selective catalytic reduction (SCR) of NOx with NH3 is the most efficient technology for NOx emissions control, but the activity of catalysts decreases exponentially with the decrease in reaction temperature, hindering the application of the technology in low-temperature SCR to treat industrial stack gases. Here, we present an industrially practicable technology to significantly enhance the SCR activity at low temperatures (<250 °C). By introducing an appropriate amount of O3 into the simulated stack gas, we find that O3 can stoichiometrically oxidize NO to generate NO2, which enables NO reduction to follow the fast SCR mechanism so as to accelerate SCR at low temperatures, and, in particular, an increase in SCR rate by more than four times is observed over atom-pair V1-W1 active sites supported on TiO2(001) at 200 °C. Using operando SCR tests and in situ diffuse reflectance infrared Fourier transform spectra, we reveal that the introduction of O3 allows SCR to proceed along a NH4NO3-mediated Langmuir-Hinshelwood model, in which the adsorbed nitrate species speed up the re-oxidation of the catalytic sites that is the rate-limiting step of SCR, thus leading to the enhancement of activity at low temperatures. This technology could be applicable in the real stack gas conditions because O3 exclusively oxidizes NO even in the co-presence of SO2 and H2O, which provides a general strategy to improve low-temperature SCR efficacy from another perspective beyond designing catalysts.


Asunto(s)
Amoníaco , Gases , Dominio Catalítico , Amoníaco/química , Oxidación-Reducción , Temperatura , Catálisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA