Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 568(7751): 259-263, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30944473

RESUMEN

The genetic compensation response (GCR) has recently been proposed as a possible explanation for the phenotypic discrepancies between gene-knockout and gene-knockdown1,2; however, the underlying molecular mechanism of the GCR remains uncharacterized. Here, using zebrafish knockdown and knockout models of the capn3a and nid1a genes, we show that mRNA bearing a premature termination codon (PTC) promptly triggers a GCR that involves Upf3a and components of the COMPASS complex. Unlike capn3a-knockdown embryos, which have small livers, and nid1a-knockdown embryos, which have short body lengths2, capn3a-null and nid1a-null mutants appear normal. These phenotypic differences have been attributed to the upregulation of other genes in the same families. By analysing six uniquely designed transgenes, we demonstrate that the GCR is dependent on both the presence of a PTC and the nucleotide sequence of the transgene mRNA, which is homologous to the compensatory endogenous genes. We show that upf3a (a member of the nonsense-mediated mRNA decay pathway) and components of the COMPASS complex including wdr5 function in GCR. Furthermore, we demonstrate that the GCR is accompanied by an enhancement of histone H3 Lys4 trimethylation (H3K4me3) at the transcription start site regions of the compensatory genes. These findings provide a potential mechanistic basis for the GCR, and may help lead to the development of therapeutic strategies that treat missense mutations associated with genetic disorders by either creating a PTC in the mutated gene or introducing a transgene containing a PTC to trigger a GCR.


Asunto(s)
Codón sin Sentido/genética , Prueba de Complementación Genética , Complejos Multiproteicos/metabolismo , ARN Mensajero/genética , Pez Cebra/genética , Animales , Proteínas de Unión al Calcio/deficiencia , Proteínas de Unión al Calcio/genética , Eliminación de Gen , Células HCT116 , Histonas/metabolismo , Humanos , Complejos Multiproteicos/química , Degradación de ARNm Mediada por Codón sin Sentido , Organismos Modificados Genéticamente , Proteínas de Pez Cebra/deficiencia , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
2.
Small ; : e2401333, 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38602227

RESUMEN

Amidst these growing sustainability concerns, producing NH4 + via electrochemical NO3 - reduction reaction (NO3RR) emerges as a promising alternative to the conventional Haber-Bosch process. In a pioneering approach, this study introduces Ru incorporation into Co3O4 lattices at the nanoscale and further couples it with electroreduction conditioning (ERC) treatment as a strategy to enhance metal oxide reducibility and induce oxygen vacancies, advancing NH4 + production from NO3RR. Here, supported by a suite of ex situ and in situ characterization measurements, the findings reveal that Ru enrichment promotes Co species reduction and oxygen vacancy formation. Further, as evidenced by the theoretical calculations, Ru integration lowers the energy barrier for oxygen vacancy formation, thereby facilitating a more energy-efficient NO3RR-to-NH4 + pathway. Optimal catalytic activity is realized with a Ru loading of 10 at.% (named 10Ru/Co3O4), achieving a high NH4 + production rate (98 nmol s-1 cm-2), selectivity (97.5%) and current density (≈100 mA cm-2) at -1.0 V vs RHE. The findings not only provide insights into defect engineering via the incorporation of secondary sites but also lay the groundwork for innovative catalyst design aimed at improving NH4 + yield from NO3RR. This research contributes to the ongoing efforts to develop sustainable electrochemical processes for nitrogen cycle management.

3.
Int J Mol Sci ; 25(11)2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38892361

RESUMEN

Sophora alopecuroides has important uses in medicine, wind breaking, and sand fixation. The CHY-zinc-finger and RING-finger (CHYR) proteins are crucial for plant growth, development, and environmental adaptation; however, genetic data regarding the CHYR family remain scarce. We aimed to investigate the CHYR gene family in S. alopecuroides and its response to abiotic stress, and identified 18 new SaCHYR genes from S. alopecuroides whole-genome data, categorized into 3 subclasses through a phylogenetic analysis. Gene structure, protein domains, and conserved motifs analyses revealed an exon-intron structure and conserved domain similarities. A chromosome localization analysis showed distribution across 12 chromosomes. A promoter analysis revealed abiotic stress-, light-, and hormone-responsive elements. An RNA-sequencing expression pattern analysis revealed positive responses of SaCHYR genes to salt, alkali, and drought stress. SaCHYR4 overexpression considerably enhanced alkali and drought tolerance in Arabidopsis thaliana. These findings shed light on SaCHYR's function and the resistance mechanisms of S. alopecuroides, presenting new genetic resources for crop resistance breeding.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Familia de Multigenes , Filogenia , Proteínas de Plantas , Sophora , Estrés Fisiológico , Estrés Fisiológico/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Sophora/genética , Arabidopsis/genética , Genoma de Planta , Sequías , Cromosomas de las Plantas/genética
4.
Opt Express ; 31(26): 42795-42806, 2023 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-38178390

RESUMEN

Photonic integrated circuits (PICs) based on gallium nitride (GaN) platforms have been widely explored for various applications at C-band (1530 nm∼1565 nm) and visible light wavelength range. However, for O-band (1260 nm∼1360 nm) commonly used in short reach/cost sensitive markets, GaN-based PICs still have not been fully investigated. In this article, a microring resonator with an intrinsic Q-factor of ∼2.67 × 104 and an extinction ratio (ER) of 35.1 dB at 1319.9 nm and 1332.1 nm, is monolithically integrated with a transverse electric-polarized focusing grating coupler and a ridge waveguide on a GaN-on-sapphire platform. This shows a great potential to further exploit the optical properties of GaN materials and integrate GaN-based PICs with the mature GaN active electronic and optoelectronic devices to form a greater platform of optoelectronic-electronic integrated circuits (OEICs) for data-center and telecom applications.

5.
Small ; 18(1): e2105082, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34741413

RESUMEN

Electrochemical generation of hydrogen peroxide (H2 O2 ) is an attractive alternative to the energy-intensive anthraquinone oxidation process. Metal-free carbon-based materials such as graphene show great promise as efficient electrocatalysts in alkaline media. In particular, the graphene edges possess superior electrochemical properties than the basal plane. However, identification and enhancement of the catalytically active sites at the edges remain challenging. Furthermore, control of surface wettability to enhance gas diffusion and promote the performance in bulk electrolysis is largely unexplored. Here, a metal-free edge-rich vertical graphene catalyst is synthesized and exhibits a superior performance for H2 O2 production, with a high onset potential (0.8 V versus reversible hydrogen electrode (RHE) at 0.1 mA cm-2 ) and 100% Faradaic efficiency at various potentials. By tailoring the oxygen-containing functional groups using various techniques of electrochemical oxidation, thermal annealing and oxygen plasma post-treatment, the edge-bound in-plane ether-type (COC) groups are revealed to account for the superior catalytic performance. To manipulate the surface wettability, a simple vacuum-based method is developed to effectively induce material hydrophobicity by accelerating hydrocarbon adsorption. The increased hydrophobicity greatly enhances gas transfer without compromising the Faradaic efficiency, enabling a H2 O2 productivity of 1767 mmol gcatalyst -1 h-1 at 0.4 V versus RHE.

6.
Planta ; 254(4): 77, 2021 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-34535825

RESUMEN

MAIN CONCLUSION: Overexpression of SaAQP can improve the salt tolerance of transgenic soybean hairy roots and A. thaliana. Salt stress severely affects crop yield and food security. There is a need to improve the salt tolerance of crops, but the discovery and utilization of salt-tolerance genes remains limited. Owing to its strong stress tolerance, Sophora alopecuroides is ideal for the identification of salt-tolerance genes. Therefore, we aimed to screen and identify the salt-tolerance genes in S. alopecuroides. With a yeast expression library of seedlings, salt-tolerant genes were screened using a salt-containing medium to simulate salt stress. By combining salt-treatment screening and transcriptome sequencing, 11 candidate genes related to salt tolerance were identified, including genes for peroxidase, inositol methyltransferase, aquaporin, cysteine synthase, pectinesterase, and WRKY. The expression dynamics of candidate genes were analyzed after salt treatment of S. alopecuroides, and salt tolerance was verified in yeast BY4743. The candidate genes participated in the salt-stress response in S. alopecuroides, and their overexpression significantly improved the salt tolerance of yeast. Salt tolerance mediated by SaAQP was further verified in soybean hairy roots and Arabidopsis thaliana, and it was found that SaAQP might enhance the salt tolerance of A. thaliana by participating in a reactive oxygen species scavenging mechanism. This result provides new genetic resources in plant breeding for salt resistance.


Asunto(s)
Tolerancia a la Sal , Sophora , Regulación de la Expresión Génica de las Plantas , Fitomejoramiento , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/metabolismo , Tolerancia a la Sal/genética , Sophora/genética , Sophora/metabolismo , Estrés Fisiológico
7.
Nanotechnology ; 32(50)2021 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-34375970

RESUMEN

In order to reduce the overpotential of hydrogen evolution reaction (HER), the ternary coating Co-W-P was deposited on the surface of the nickel foam by electrochemical deposition to obtain a highly active electrode. Based on the measured double layer capacitance (Cdl) and HER activity, there is volcanic behavior between the intrinsic activity of Co-W-P and the Co:W ratio in the electrolyte. W and P play different roles in the formation of nanoparticles, and work together to achieve the large electrochemical surface area and excellent activity. When applied to the modification of other catalysts (Ni-P and Fe-P), the higher intrinsic activity was obtained after the introduction of W.

8.
Int J Mol Sci ; 22(5)2021 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-33673678

RESUMEN

Salt stress is the main abiotic stress that limits crop yield and agricultural development. Therefore, it is imperative to study the effects of salt stress on plants and the mechanisms through which plants respond to salt stress. In this study, we used transcriptomics and metabolomics to explore the effects of salt stress on Sophora alopecuroides. We found that salt stress incurred significant gene expression and metabolite changes at 0, 4, 24, 48, and 72 h. The integrated transcriptomic and metabolomic analysis revealed that the differentially expressed genes (DEGs) and differential metabolites (DMs) obtained in the phenylpropanoid biosynthesis pathway were significantly correlated under salt stress. Of these, 28 DEGs and seven DMs were involved in lignin synthesis and 23 DEGs and seven DMs were involved in flavonoid synthesis. Under salt stress, the expression of genes and metabolites related to lignin and flavonoid synthesis changed significantly. Lignin and flavonoids may participate in the removal of reactive oxygen species (ROS) in the root tissue of S. alopecuroides and reduced the damage caused under salt stress. Our research provides new ideas and genetic resources to study the mechanism of plant responses to salt stress and further improve the salt tolerance of plants.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Metaboloma , Fenilpropionatos/metabolismo , Proteínas de Plantas/metabolismo , Tolerancia a la Sal , Sophora/metabolismo , Transcriptoma , Perfilación de la Expresión Génica , Lignina/biosíntesis , Proteínas de Plantas/genética , Sophora/genética , Sophora/crecimiento & desarrollo , Estrés Fisiológico
9.
Int J Mol Sci ; 22(14)2021 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-34298928

RESUMEN

Salt stress seriously restricts crop yield and quality, leading to an urgent need to understand its effects on plants and the mechanism of plant responses. Although phytohormones are crucial for plant responses to salt stress, the role of phytohormone signal transduction in the salt stress responses of stress-resistant species such as Sophora alopecuroides has not been reported. Herein, we combined transcriptome and metabolome analyses to evaluate expression changes of key genes and metabolites associated with plant hormone signal transduction in S. alopecuroides roots under salt stress for 0 h to 72 h. Auxin, cytokinin, brassinosteroid, and gibberellin signals were predominantly involved in regulating S. alopecuroides growth and recovery under salt stress. Ethylene and jasmonic acid signals may negatively regulate the response of S. alopecuroides to salt stress. Abscisic acid and salicylic acid are significantly upregulated under salt stress, and their signals may positively regulate the plant response to salt stress. Additionally, salicylic acid (SA) might regulate the balance between plant growth and resistance by preventing reduction in growth-promoting hormones and maintaining high levels of abscisic acid (ABA). This study provides insight into the mechanism of salt stress response in S. alopecuroides and the corresponding role of plant hormones, which is beneficial for crop resistance breeding.


Asunto(s)
Estrés Salino/genética , Transducción de Señal/genética , Sophora/genética , Ácido Abscísico/metabolismo , Brasinoesteroides/metabolismo , Citocininas/genética , Etilenos/metabolismo , Perfilación de la Expresión Génica/métodos , Regulación de la Expresión Génica de las Plantas/genética , Ácidos Indolacéticos/metabolismo , Fitomejoramiento/métodos , Reguladores del Crecimiento de las Plantas/genética , Proteínas de Plantas/genética , Ácido Salicílico/metabolismo , Tolerancia a la Sal/genética , Sophora/metabolismo , Estrés Fisiológico/genética , Transcriptoma/genética , Regulación hacia Arriba/genética
10.
Small ; 15(20): e1900862, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30997956

RESUMEN

A stable MnOx @C@MnOx core-shell heterostructure consisting of vertical MnOx nanosheets grown evenly on the surface of the MnOx @carbon nanowires are obtained by simple liquid phase method combined with thermal treatment. The hierarchical MnOx @C@MnOx heterostructure electrode possesses a high specific capacitance of 350 F g-1 and an excellent cycle performance owing to the existence of the pore structure among the ultrasmall MnOx nanoparticles and the rapid transmission of electrons between the active material and carbon coating layer. Particularly, according to the in situ Raman spectra analysis, no characteristic peaks corresponding to MnOOH are found during charging/discharging, indicating that pseudocapacitive behavior of the MnOx electrode have no relevance to the intercalation/deintercalation of protons (H+ ) in the electrolyte. Further combining in situ X-ray powder diffraction analysis, the diffraction peak of α-MnO2 can be detected in the process of charging, while Mn3 O4 phase is found in discharge products. Therefore, these results demonstrate that the MnOx undergoes a reversible phase transformation reaction of Mn3 O4 ↔α-MnO2 . Moreover, the assembled all-solid-state asymmetric supercapacitor with a MnOx @C@MnOx electrode delivers a high energy density of 23 Wh kg-1 , an acceptable power density of 2500 W kg-1 , and an excellent cyclic stability performance of 94% after 2000 cycles, showing the potential for practical application.

11.
Small ; 14(1)2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29131541

RESUMEN

DNA origami methods enable the fabrication of various nanostructures and nanodevices, but their effective use depends on an understanding of their structural and mechanical properties and the effects of basic structural features. Frequency-modulation atomic force microscopy is introduced to directly characterize, in aqueous solution, the crossover regions of sets of 2D DNA origami based on different crossover/nick designs. Rhombic-shaped nanostructures formed under the influence of flexible crossovers placed between DNA helices are observed in DNA origami incorporating crossovers every 3, 4, or 6 DNA turns. The bending rigidity of crossovers is determined to be only one-third of that of the DNA helix, based on interhelical electrostatic forces reported elsewhere, and the measured pitches of the 3-turn crossover design rhombic-shaped nanostructures undergoing negligible bending. To evaluate the robustness of their structural integrity, they are intentionally and simultaneously stressed using force-controlled atomic force microscopy. DNA crossovers are verified to have a stabilizing effect on the structural robustness, while the nicks have an opposite effect. The structural and mechanical properties of DNA origami and the effects of crossovers and nicks revealed in this paper can provide information essential for the design of versatile DNA origami structures that exhibit specified and desirable properties.


Asunto(s)
ADN/química , Nanoestructuras/química , Estudios Cruzados , Microscopía de Fuerza Atómica , Nanotecnología/métodos , Conformación de Ácido Nucleico
12.
Phys Chem Chem Phys ; 19(44): 29886-29894, 2017 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-29086786

RESUMEN

Lithium cathode materials have been considered as promising candidates for energy storage applications because of their high power/energy densities, low cost, and low toxicity. However, the Li/Ni cation mixing limits their application as practical electrode materials. The cation mixing of lithium transition-metal oxides, which was first considered only as the origin of performance degeneration, has recently been reconsidered as a way to stabilize the structure of active materials. Here we find that as the duration of the post-synthesis thermal treatment (at 500 °C) of LiNi1/3Co1/3Mn1/3O2 (NCM) was increased, the Li/Ni molar ratio in the final product was found to decrease, and this was attributed to the reduction in nickel occupying lithium sites; the cation mixing subtly changed; and those subtle variations remarkably influence their cycling performance. The cathode material with appropriate cation mixing exhibits a much slower voltage decay and capacity fade during long-term cycling. Combining X-ray diffraction, Rietveld analysis, the Fourier transform infrared technique, field-emission scanning electron microscopy, and electrochemical measurements, we demonstrate that an optimal degree of Ni2+ occupancy in the lithium layer enhances the electrochemical performance of layered NMC materials and that this occurs through a "pillaring" effect. The results provide new insights into "cation mixing" as a new concept for material design utilization of layered cathodes for lithium-ion batteries, thereby promoting their further application in lithium-ion batteries with new functions and properties.

13.
Guang Pu Xue Yu Guang Pu Fen Xi ; 36(8): 2492-8, 2016 Aug.
Artículo en Zh | MEDLINE | ID: mdl-30074352

RESUMEN

Raman spectroscopy gas detection technology which uses a single wavelength laser detection of gas samples without contact and loss is suitable for dissolved gas detection in oil-immersed transformers. Combined with the features of Raman spectral lines, the analysis of the detection mechanism in Raman spectroscopy technology has been made. Raman spectral lines have been presented in the expression of the convolution of Lorentz function and Gaussian function, which shows preferable Raman spectrum peak linear outline basic characteristics. In this paper, the basic features of the peak height, the peak position and the half peak width, are the main targets of peak searching, and the fundamental purpose of this paper is to obtain qualitative and quantitative analysis of the sample. Therefore, the experimental data of Raman spectroscopy is designed based on the comparison method to realize the automatic peak seeking model to achieve the detection target. Therefore, according to the automatic peak searching model based on the comparison method is designed to achieve the detection target. The simulation results of using peak searching model in the Voigt linear model show that spectrum peak height and peak position are in conformity with the theory in the test experiment. Based on the establishment of Raman spectroscopy detection platform aiming at the dissolved gas in transformer oil, the analysis of the experimental data show that the actual values of the half peak height and width are (8.7,11.5)(cm-1)in the Voigt linear model with deviations. Setting the value as 10.257 cm-1 to modify the parameter, then compared with the research results, it shows that the modified Voigt linear model and the peak searching model have better adaptability and practicability. Combined with the gas detection in the experimental platform in the experimental platform of Raman spectroscopy,detection of seven kinds of transformer fault characteristic gas and analysis of peak searching have been completed effectively. In terms of methane gas, the linear relationship among the unit gas content, Raman characteristic peak intensity and the area has been obtained, which has laid a foundation for the quantitative analysis of the dissolved gas in transformer oil.

14.
Phys Chem Chem Phys ; 17(35): 23017-25, 2015 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-26271159

RESUMEN

Porous Mn3O4 hexagonal nanoplates were synthesized through annealing the hydrohausmannite precursor obtained by a one-pot hydrothermal process and by precisely controlling the concentrations of potassium hydroxide and glucose. The effect of potassium hydroxide and glucose on the growth of hexagonal nanoplates was investigated, and a growth mechanism was also proposed. Due to its abundant pores, the pure Mn3O4-based electrode exhibits excellent cycling stability with 100% capacity retention after 5000 cycles. The asymmetric supercapacitor exhibited high performance with an energy density of 17.276 W h kg(-1) at a power density of 207.3 W kg(-1) in a wide potential window of 1.5 V.

15.
Phys Chem Chem Phys ; 16(17): 7728-33, 2014 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-24638079

RESUMEN

Monodispersed LiFePO4 nanocrystals with diverse morphologies were successfully synthesized via a mild and controllable solvothermal approach with a mixture of ethylene glycol and oleic acid as the solvent. Morphology evolution of LiFePO4 nanoparticles from nanoplates to nanorods can be simply realized by varying the volume ratio of oleic acid to ethylene glycol. Moreover, the mechanism of competitive adsorption between ethylene glycol and oleic acid was proposed for the formation of different morphologies. Electrochemical measurements show that the LiFePO4/C nanorods have an initial discharge capacity of 155 mA h g(-1) at 0.5 C with a capacity retention of 80% at a high rate of 5 C, which confirms that LiFePO4/C nanorods exhibit excellent rate capability and cycling stability.

16.
Microsyst Nanoeng ; 10: 11, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38261871

RESUMEN

This paper presents a high-performance MEMS accelerometer with a DC/AC electrostatic stiffness tuning capability based on double-sided parallel plates (DSPPs). DC and AC electrostatic tuning enable the adjustment of the effective stiffness and the calibration of the geometric offset of the proof mass, respectively. A dynamical model of the proposed accelerometer was developed considering both DC/AC electrostatic tuning and the temperature effect. Based on the dynamical model, a self-centering closed loop is proposed for pulling the reference position of the force-to-rebalance (FTR) to the geometric center of DSPP. The self-centering accelerometer operates at the optimal reference position by eliminating the temperature drift of the readout circuit and nulling the net electrostatic tuning forces. The stiffness closed-loop is also incorporated to prevent the pull-in instability of the tuned low-stiffness accelerometer under a dramatic temperature variation. Real-time adjustments of the reference position and the DC tuning voltage are utilized to compensate for the residue temperature drift of the proposed accelerometer. As a result, a novel controlling approach composed of a self-centering closed loop, stiffness-closed loop, and temperature drift compensation is achieved for the accelerometer, realizing a temperature drift coefficient (TDC) of approximately 7 µg/°C and an Allan bias instability of less than 1 µg.

17.
ACS Appl Mater Interfaces ; 16(24): 31833-31842, 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38842794

RESUMEN

Organic small molecules are proven to be capable of passivating the bulk/interfacial defects in inorganic perovskite solar cells. Considering the burdensome situation to screen the functional small molecules, we employ a modified machine learning (ML) strategy to guide screening suitable small molecules toward efficient solar cells through three modified ML algorithms to construct the prediction model: (i) random forest algorithm (RF), (ii) support vector machine algorithm (SVR), and (iii) XGBoost. Among them, the XGBoost algorithm displays a better overall predictive performance, whereby the R2 index reaches 0.939. Accordingly, eight small molecules are selected to modify the interface of perovskite films, and both the theoretical and experimental results certify that the difluorobenzylamine with additional fluorine atoms has a better interface modification effect among the small molecules containing functional groups, e.g., the benzene ring and amino group. The high accuracy of the modified machine learning model enables us to simplify the small-molecule screening process and form an important step for ongoing developments in perovskite solar cells and other optoelectronic devices.

18.
Int J Biol Macromol ; 260(Pt 1): 129465, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38242394

RESUMEN

Chitosan exhibits a wide source, non-toxic and biodegradable, and is the optimal functional raw material for preparing food packaging materials. However, the pure chitosan film has some disadvantages such as limited antibacterial activity and weak mechanical properties. In this study, sulfobetaines modified chitosan (CS-SBMA) was synthesized by grafting copolymerized betaine methacrylate sulfonate onto the chain of chitosan to improve the anti-bacterial adhesion and antibacterial properties of chitosan, aiming to develop antibacterial and anti-bacterial adhesion films based on CS-SBMA and polyvinyl alcohol (PVA) by the casting method. The structure of CS-SBMA was characterized by 1H NMR and FTIR. The appropriate proportion of CS-SBMA/PVA was determined to be 1/1 and 1/2, by characterizing the composite films with FTIR, XRD, SEM, mechanical, optical, and water resistance behaviors. In addition, CS-SBMA/PVA films showed excellent antibacterial, anti-bacterial adhesion and biofilm control function. The colonies number of E. coli and S. aureus on the surface of CS-SBMA/PVA 1/1 film decreased 94.15 % and 94.27 %, respectively, and 92.93 % of S. aureus and 94.87 % of E. coli colonies were inactivated within 60 min contact. These results indicate that CS-SBMA/PVA film exhibits potential antibacterial and anti-bacterial adhesion properties, which is suitable for food packaging materials.


Asunto(s)
Betaína/análogos & derivados , Quitosano , Quitosano/química , Alcohol Polivinílico/química , Staphylococcus aureus , Escherichia coli , Antibacterianos/farmacología , Antibacterianos/química , Embalaje de Alimentos/métodos
19.
ACS Nano ; 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38953611

RESUMEN

Rechargeable aqueous batteries adopting Fe-based materials are attracting widespread attention by virtue of high-safety and low-cost. However, the present Fe-based anodes suffer from low electronic/ionic conductivity and unsatisfactory comprehensive performance, which greatly restrict their practicability. Concerning the principle of physical chemistry, fabricating electrodes that could simultaneously achieve ideal thermodynamics and fast kinetics is a promising issue. Herein, hierarchical Fe3O4@Fe foam electrode with enhanced interface/grain boundary engineering is fabricated through an in situ self-regulated strategy. The electrode achieves ultrahigh areal capacity of 31.45 mA h cm-2 (50 mA cm-2), good scale application potential (742.54 mA h for 25 cm2 electrode), satisfied antifluctuation capability, and excellent cycling stability. In/ex situ characterizations further validate the desired thermodynamic and kinetic properties of the electrode endowed with accurate interface regulation, which accounts for salient electrochemical reversibility in a two-stage phase transition and slight energy loss. This work offers a suitable strategy in designing high-performance Fe-based electrodes with comprehensive inherent characteristics for high-safety large-scale energy storage.

20.
J Colloid Interface Sci ; 674: 805-812, 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38955011

RESUMEN

Lithium-sulfur (Li-S) batteries represent the most promising next-generation energy storage systems because of their high theoretical specific capacity and energy density. However, the severe shuttle effect and volume expansion of sulfur cathodes have impeded their commercial viability. Hence, accelerating the conversion of lithium polysulfides (LiPSs) is crucial for achieving efficient Li-S batteries. In this study, we employ a straightforward electrostatic self-assembly method to coat ultra-thin MXene nanosheets onto a S@MnO2 core-shell structure, resulting in a highly conductive three-dimensional network. This unique structure not only suppresses the diffusion of LiPSs but also accelerates electron and ion transfer, ensuring a rapid and efficient conversion of LiPSs. The CV curves of symmetrical cells and the Li2S deposition curves demonstrate a significant improvement in the catalytic performance of batteries with S@MnO2@MXene. The capacity of Li-S batteries achieved an impressive 842 mAh/g at the current density of 1C, with a minimal capacity decay of only 0.84 mAh/g per cycle within 500 cycles. Additionally, increasing the sulfur loading mass to 5.88 mg cm-2 resulted in an areal capacity of 6.33 mAh cm-2, demonstrating practical application potential.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA