Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
1.
EMBO Rep ; 24(3): e56007, 2023 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-36588479

RESUMEN

Legionella pneumophila replicates in macrophages and amoeba within a unique compartment, the Legionella-containing vacuole (LCV). Hallmarks of LCV formation are the phosphoinositide lipid conversion from PtdIns(3)P to PtdIns(4)P, fusion with ER-derived vesicles and a tight association with the ER. Proteomics of purified LCVs indicate the presence of membrane contact sites (MCS) proteins possibly implicated in lipid exchange. Using dually fluorescence-labeled Dictyostelium discoideum amoeba, we reveal that VAMP-associated protein (Vap) and the PtdIns(4)P 4-phosphatase Sac1 localize to the ER, and Vap also localizes to the LCV membrane. Furthermore, Vap as well as Sac1 promote intracellular replication of L. pneumophila and LCV remodeling. Oxysterol binding proteins (OSBPs) preferentially localize to the ER (OSBP8) or the LCV membrane (OSBP11), respectively, and restrict (OSBP8) or promote (OSBP11) bacterial replication and LCV expansion. The sterol probes GFP-D4H* and filipin indicate that sterols are rapidly depleted from LCVs, while PtdIns(4)P accumulates. In addition to Sac1, the PtdIns(4)P-subverting L. pneumophila effector proteins LepB and SidC also support LCV remodeling. Taken together, the Legionella- and host cell-driven PtdIns(4)P gradient at LCV-ER MCSs promotes Vap-, OSBP- and Sac1-dependent pathogen vacuole maturation.


Asunto(s)
Dictyostelium , Legionella pneumophila , Legionella , Vacuolas/metabolismo , Legionella/metabolismo , Dictyostelium/microbiología , Fosfatidilinositoles/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas Bacterianas/metabolismo
2.
New Phytol ; 239(3): 1083-1097, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37282607

RESUMEN

An increasing number of small proteins has been identified in the genomes of well-annotated organisms, including the model cyanobacterium Synechocystis sp. PCC 6803. We describe a newly assigned protein comprising 37 amino acids that is encoded upstream of the superoxide dismutase SodB encoding gene. To clarify the role of SliP4, we analyzed a Synechocystis sliP4 mutant and a strain containing a fully active, Flag-tagged variant of SliP4 (SliP4.f). The initial hypothesis that this small protein might be functionally related to SodB could not be supported. Instead, we provide evidence that it fulfills important functions related to the organization of photosynthetic complexes. Therefore, we named it a small light-induced protein of 4 kDa, SliP4. This protein is strongly induced under high-light conditions. The lack of SliP4 causes a light-sensitive phenotype due to impaired cyclic electron flow and state transitions. Interestingly, SliP4.f was co-isolated with NDH1 complex and both photosystems. The interaction between SliP4.f and all three types of complexes was further confirmed by additional pulldowns and 2D-electrophoreses. We propose that the dimeric SliP4 serves as a molecular glue promoting the aggregation of thylakoid complexes, which contributes to different electron transfer modes and energy dissipation under stress conditions.


Asunto(s)
Proteínas del Complejo del Centro de Reacción Fotosintética , Synechocystis , Transporte de Electrón , Synechocystis/metabolismo , Luz , Proteínas del Complejo del Centro de Reacción Fotosintética/metabolismo , Tilacoides/metabolismo , Fotosíntesis , Proteínas Bacterianas/metabolismo , Complejo de Proteína del Fotosistema II/metabolismo , Complejo de Proteína del Fotosistema I/metabolismo
3.
Nucleic Acids Res ; 49(4): 2192-2212, 2021 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-33450025

RESUMEN

In Staphylococcus aureus, de novo methionine biosynthesis is regulated by a unique hierarchical pathway involving stringent-response controlled CodY repression in combination with a T-box riboswitch and RNA decay. The T-box riboswitch residing in the 5' untranslated region (met leader RNA) of the S. aureus metICFE-mdh operon controls downstream gene transcription upon interaction with uncharged methionyl-tRNA. met leader and metICFE-mdh (m)RNAs undergo RNase-mediated degradation in a process whose molecular details are poorly understood. Here we determined the secondary structure of the met leader RNA and found the element to harbor, beyond other conserved T-box riboswitch structural features, a terminator helix which is target for RNase III endoribonucleolytic cleavage. As the terminator is a thermodynamically highly stable structure, it also forms posttranscriptionally in met leader/ metICFE-mdh read-through transcripts. Cleavage by RNase III releases the met leader from metICFE-mdh mRNA and initiates RNase J-mediated degradation of the mRNA from the 5'-end. Of note, metICFE-mdh mRNA stability varies over the length of the transcript with a longer lifespan towards the 3'-end. The obtained data suggest that coordinated RNA decay represents another checkpoint in a complex regulatory network that adjusts costly methionine biosynthesis to current metabolic requirements.


Asunto(s)
Metionina/biosíntesis , Operón , Estabilidad del ARN , ARN Mensajero/metabolismo , Ribonucleasa III/metabolismo , Riboswitch , Staphylococcus aureus/genética , Regiones no Traducidas 5' , Proteínas Bacterianas/biosíntesis , Proteínas Bacterianas/genética , Conformación de Ácido Nucleico , División del ARN , Staphylococcus aureus/enzimología , Staphylococcus aureus/metabolismo
4.
Nucleic Acids Res ; 49(5): 2894-2915, 2021 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-33619526

RESUMEN

Trans-acting regulatory RNAs have the capacity to base pair with more mRNAs than generally detected under defined conditions, raising the possibility that sRNA target specificities vary depending on the specific metabolic or environmental conditions. In Sinorhizobium meliloti, the sRNA rnTrpL is derived from a tryptophan (Trp) transcription attenuator located upstream of the Trp biosynthesis gene trpE(G). The sRNA rnTrpL contains a small ORF, trpL, encoding the 14-aa leader peptide peTrpL. If Trp is available, efficient trpL translation causes transcription termination and liberation of rnTrpL, which subsequently acts to downregulate the trpDC operon, while peTrpL is known to have a Trp-independent role in posttranscriptional regulation of antibiotic resistance mechanisms. Here, we show that tetracycline (Tc) causes rnTrpL accumulation independently of Trp availability. In the presence of Tc, rnTrpL and peTrpL act collectively to destabilize rplUrpmA mRNA encoding ribosomal proteins L21 and L27. The three molecules, rnTrpL, peTrpL, and rplUrpmA mRNA, form an antibiotic-dependent ribonucleoprotein complex (ARNP). In vitro reconstitution of this ARNP in the presence of competing trpD and rplU transcripts revealed that peTrpL and Tc cause a shift of rnTrpL specificity towards rplU, suggesting that sRNA target prioritization may be readjusted in response to changing environmental conditions.


Asunto(s)
Antibacterianos/farmacología , Péptidos/metabolismo , Estabilidad del ARN , ARN Mensajero/metabolismo , ARN Pequeño no Traducido/metabolismo , Sinorhizobium meliloti/genética , Tetraciclina/farmacología , Emparejamiento Base , Regulación Bacteriana de la Expresión Génica , Péptidos/química , ARN sin Sentido/metabolismo , ARN Mensajero/química , ARN Pequeño no Traducido/química , Proteínas Ribosómicas/genética , Proteínas Ribosómicas/metabolismo , Sinorhizobium meliloti/efectos de los fármacos
5.
Int J Mol Sci ; 24(2)2023 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-36674894

RESUMEN

Chemosensory pathways and two-component systems are important bacterial signal transduction systems. In the human pathogen Pseudomonas aeruginosa, these systems control many virulence traits. Previous studies showed that inorganic phosphate (Pi) deficiency induces virulence. We report here the abundance of chemosensory and two-component signaling proteins of P. aeruginosa grown in Pi deficient and sufficient media. The cellular abundance of chemoreceptors differed greatly, since a 2400-fold difference between the most and least abundant receptors was observed. For many chemoreceptors, their amount varied with the growth condition. The amount of chemoreceptors did not correlate with the magnitude of chemotaxis to their cognate chemoeffectors. Of the four chemosensory pathways, proteins of the Che chemotaxis pathway were most abundant and showed little variation in different growth conditions. The abundance of chemoreceptors and solute binding proteins indicates a sensing preference for amino acids and polyamines. There was an excess of response regulators over sensor histidine kinases in two-component systems. In contrast, ratios of the response regulators CheY and CheB to the histidine kinase CheA of the Che pathway were all below 1, indicative of different signaling mechanisms. This study will serve as a reference for exploring sensing preferences and signaling mechanisms of other bacteria.


Asunto(s)
Proteínas Bacterianas , Pseudomonas aeruginosa , Humanos , Histidina Quinasa/metabolismo , Pseudomonas aeruginosa/metabolismo , Proteínas Bacterianas/metabolismo , Histidina/metabolismo , Proteínas Portadoras/metabolismo , Quimiotaxis/fisiología , Transducción de Señal
6.
Environ Microbiol ; 24(8): 3672-3692, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35415862

RESUMEN

The environmental bacterium Legionella pneumophila causes the pneumonia Legionnaires' disease. The opportunistic pathogen forms biofilms and employs the Icm/Dot type IV secretion system (T4SS) to replicate in amoebae and macrophages. A regulatory network comprising the Legionella quorum sensing (Lqs) system and the transcription factor LvbR controls bacterial motility, virulence and biofilm architecture. Here we show by comparative proteomics that in biofilms formed by the L. pneumophila ΔlqsR or ΔlvbR regulatory mutants the abundance of proteins encoded by a genomic 'fitness island', metabolic enzymes, effector proteins and flagellar components (e.g. FlaA) varies. ∆lqsR or ∆flaA mutants form 'patchy' biofilms like the parental strain JR32, while ∆lvbR forms a 'mat-like' biofilm. Acanthamoeba castellanii amoebae migrated more slowly through biofilms of L. pneumophila lacking lqsR, lvbR, flaA, a functional Icm/Dot T4SS (∆icmT), or secreted effector proteins. Clusters of bacteria decorated amoebae in JR32, ∆lvbR or ∆icmT biofilms but not in ∆lqsR or ∆flaA biofilms. The amoeba-adherent bacteria induced promoters implicated in motility (PflaA ) or virulence (PsidC , PralF ). Taken together, the Lqs-LvbR network (quorum sensing), FlaA (motility) and the Icm/Dot T4SS (virulence) regulate migration of A. castellanii through L. pneumophila biofilms, and - apart from the T4SS - govern bacterial cluster formation on the amoebae.


Asunto(s)
Acanthamoeba castellanii , Legionella pneumophila , Legionella , Enfermedad de los Legionarios , Proteínas Bacterianas/metabolismo , Biopelículas , Flagelos/genética , Flagelos/metabolismo , Humanos , Legionella/metabolismo , Legionella pneumophila/genética , Percepción de Quorum
7.
Biochem J ; 478(3): 619-632, 2021 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-33427868

RESUMEN

Sulfur-containing amino acid residues function in antioxidative responses, which can be induced by the reactive oxygen species generated by excessive copper and hydrogen peroxide. In all Na+/K+, Ca2+, and H+ pumping P-type ATPases, a cysteine residue is present two residues upstream of the essential aspartate residue, which is obligatorily phosphorylated in each catalytic cycle. Despite its conservation, the function of this cysteine residue was hitherto unknown. In this study, we analyzed the function of the corresponding cysteine residue (Cys-327) in the autoinhibited plasma membrane H+-ATPase isoform 2 (AHA2) from Arabidopsis thaliana by mutagenesis and heterologous expression in a yeast host. Enzyme kinetics of alanine, serine, and leucine substitutions were identical with those of the wild-type pump but the sensitivity of the mutant pumps was increased towards copper and hydrogen peroxide. Peptide identification and sequencing by mass spectrometry demonstrated that Cys-327 was prone to oxidation. These data suggest that Cys-327 functions as a protective residue in the plasma membrane H+-ATPase, and possibly in other P-type ATPases as well.


Asunto(s)
Proteínas de Arabidopsis/química , Arabidopsis/enzimología , Cisteína/química , ATPasas de Translocación de Protón/química , Alquilación , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Proteínas de Arabidopsis/antagonistas & inhibidores , Secuencia Conservada , Cobre/metabolismo , Peróxido de Hidrógeno/metabolismo , Yodoacetamida/farmacología , Cinética , Microsomas/metabolismo , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Oxidación-Reducción , Conformación Proteica , Dominios Proteicos , ATPasas de Translocación de Protón/antagonistas & inhibidores , Especies Reactivas de Oxígeno/metabolismo , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Relación Estructura-Actividad
8.
Proteomics ; 21(23-24): e2100008, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34145981

RESUMEN

The recent discovery of alternative open reading frames creates a need for suitable analytical approaches to verify their translation and to characterize the corresponding gene products at the molecular level. As the analysis of small proteins within a background proteome by means of classical bottom-up proteomics is challenging, method development for the analysis of small open reading frame encoded peptides (SEPs) have become a focal point for research. Here, we highlight bottom-up and top-down proteomics approaches established for the analysis of SEPs in both pro- and eukaryotes. Major steps of analysis, including sample preparation and (small) proteome isolation, separation and mass spectrometry, data interpretation and quality control, quantification, the analysis of post-translational modifications, and exploration of functional aspects of the SEPs by means of proteomics technologies are described. These methods do not exclusively cover the analytics of SEPs but simultaneously include the low molecular weight proteome, and moreover, can also be used for the proteome-wide analysis of proteolytic processing events.


Asunto(s)
Proteoma , Proteómica , Peso Molecular , Sistemas de Lectura Abierta , Péptidos/genética
9.
Mol Cell Proteomics ; 18(4): 704-714, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30679258

RESUMEN

Phages are viruses that specifically infect and eventually kill their bacterial hosts. Bacterial fermentation and biotechnology industries see them as enemies, however, they are also investigated as antibacterial agents for the treatment or prevention of bacterial infections in various sectors. They also play key ecological roles in all ecosystems. Despite decades of research some aspects of phage biology are still poorly understood. In this study, we used label-free quantitative proteomics to reveal the proteotypes of Lactococcus lactis MG1363 during infection by the virulent phage p2, a model for studying the biology of phages infecting Gram-positive bacteria. Our approach resulted in the high-confidence detection and quantification of 59% of the theoretical bacterial proteome, including 226 bacterial proteins detected only during phage infection and 6 proteins unique to uninfected bacteria. We also identified many bacterial proteins of differing abundance during the infection. Using this high-throughput proteomic datasets, we selected specific bacterial genes for inactivation using CRISPR-Cas9 to investigate their involvement in phage replication. One knockout mutant lacking gene llmg_0219 showed resistance to phage p2 because of a deficiency in phage adsorption. Furthermore, we detected and quantified 78% of the theoretical phage proteome and identified many proteins of phage p2 that had not been previously detected. Among others, we uncovered a conserved small phage protein (pORFN1) coded by an unannotated gene. We also applied a targeted approach to achieve greater sensitivity and identify undetected phage proteins that were expected to be present. This allowed us to follow the fate of pORF46, a small phage protein of low abundance. In summary, this work offers a unique view of the virulent phages' takeover of bacterial cells and provides novel information on phage-host interactions.


Asunto(s)
Proteínas Bacterianas/metabolismo , Bacteriófago P2/fisiología , Lactococcus lactis/virología , Proteoma/metabolismo , Sistemas CRISPR-Cas/genética , Edición Génica , Genes Bacterianos , Lactococcus lactis/genética , Lactococcus lactis/crecimiento & desarrollo , Proteínas Virales/metabolismo
10.
Mol Cell Proteomics ; 18(6): 1036-1053, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30850421

RESUMEN

Staphylococcus aureus is the causative agent of various biofilm-associated infections in humans causing major healthcare problems worldwide. This type of infection is inherently difficult to treat because of a reduced metabolic activity of biofilm-embedded cells and the protective nature of a surrounding extracellular matrix (ECM). However, little is known about S. aureus biofilm physiology and the proteinaceous composition of the ECM. Thus, we cultivated S. aureus biofilms in a flow system and comprehensively profiled intracellular and extracellular (ECM and flow-through (FT)) biofilm proteomes, as well as the extracellular metabolome compared with planktonic cultures. Our analyses revealed the expression of many pathogenicity factors within S. aureus biofilms as indicated by a high abundance of capsule biosynthesis proteins along with various secreted virulence factors, including hemolysins, leukotoxins, and lipases as a part of the ECM. The activity of ECM virulence factors was confirmed in a hemolysis assay and a Galleria mellonella pathogenicity model. In addition, we uncovered a so far unacknowledged moonlighting function of secreted virulence factors and ribosomal proteins trapped in the ECM: namely their contribution to biofilm integrity. Mechanistically, it was revealed that this stabilizing effect is mediated by the strong positive charge of alkaline virulence factors and ribosomal proteins in an acidic ECM environment, which is caused by the release of fermentation products like formate, lactate, and acetate because of oxygen limitation in biofilms. The strong positive charge of these proteins most likely mediates electrostatic interactions with anionic cell surface components, eDNA, and anionic metabolites. In consequence, this leads to strong cell aggregation and biofilm stabilization. Collectively, our study identified a new molecular mechanism during S. aureus biofilm formation and thus significantly widens the understanding of biofilm-associated S. aureus infections - an essential prerequisite for the development of novel antimicrobial therapies.


Asunto(s)
Proteínas Bacterianas/metabolismo , Biopelículas , Staphylococcus aureus/metabolismo , Staphylococcus aureus/fisiología , Factores de Virulencia/metabolismo , Ácidos/metabolismo , Animales , ADN Bacteriano/metabolismo , Matriz Extracelular/efectos de los fármacos , Matriz Extracelular/metabolismo , Metaboloma , Modelos Biológicos , Mariposas Nocturnas/microbiología , Presión Osmótica , Oxígeno/farmacología , Fenotipo , Plancton/citología , Conejos , Proteínas Ribosómicas/metabolismo , Staphylococcus aureus/citología
11.
J Proteome Res ; 19(10): 4004-4018, 2020 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-32812434

RESUMEN

Small open reading frame encoded proteins (SEPs) gained increasing interest during the last few years because of their broad range of important functions in both prokaryotes and eukaryotes. In bacteria, signaling, virulence, and regulation of enzyme activities have been associated with SEPs. Nonetheless, the number of SEPs detected in large-scale proteome studies is often low as classical methods are biased toward the identification of larger proteins. Here, we present a workflow that allows enhanced identification of small proteins compared to traditional protocols. For this aim, the steps of small protein enrichment, proteolytic digest, and database search were reviewed and adjusted to the special requirement of SEPs. Enrichment by the use of small-pore-sized solid-phase material increased the number of identified SEPs by a factor of 2, and utilization of alternative proteases to trypsin reduced the spectral counts for larger proteins. The application of the optimized protocol allowed the detection of 210 already annotated proteins up to 100 amino acids (aa) length, including 16 proteins below 51 aa in the Gram-positive model organism Bacillus subtilis. Moreover, 12% of all identified proteins were up to 100 aa, which is a significantly larger fraction than that reported in studies involving traditional proteomics workflows. Finally, the application of an integrated proteogenomics search database and extensive subsequent validation resulted in the confident identification of three novel, not yet annotated, SEPs, which are 21, 26, and 42 aa long.


Asunto(s)
Proteogenómica , Proteómica , Sistemas de Lectura Abierta , Proteoma , Flujo de Trabajo
12.
J Proteome Res ; 19(4): 1435-1446, 2020 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-32154730

RESUMEN

To understand bacterial reactions to environmental stress or infection-related processes, it is necessary to identify the involved proteins. In mass spectrometry-based proteomics, the method of choice for spectra-to-peptide-match is database search, but in recent times, spectral libraries have come into focus. Here, we built a mass spectral library from Streptococcus pneumoniae D39, reflecting 76% of the theoretical proteome of the organism. Besides the proteins themselves, posttranslational protein modifications especially reveal central hubs of regulation in bacterial pathogenesis. Here, for example, phosphorylation events are involved in the signal transduction and regulation of virulence. Although there have been major advances in phosphoproteomics, identification of this modification is still challenging. To enhance the number of phosphorylated peptides, which can be reproducibly detected, a comprehensive mass spectral library of the S. pneumoniae D39 phosphoproteome has been compiled in addition to the comprehensive total proteome mass spectral library. The phosphopeptide library was manually validated, and the data quality was additionally proven by analyses of synthetic phosphorylated peptides. In total, 128 phosphorylated proteins were revealed, of which many are involved in glycolysis, purine metabolism, protein biosynthesis, and virulence. The publicly available, thoroughly validated spectral libraries are an excellent resource to improve and speed up future investigations on the proteome and phosphoproteome of pneumococci.


Asunto(s)
Fosfoproteínas , Streptococcus pneumoniae , Espectrometría de Masas , Fosforilación , Proteoma , Proteómica
13.
Mol Cell Proteomics ; 17(2): 335-348, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29183913

RESUMEN

Reversible protein phosphorylation is one of the major mechanisms in the regulation of protein expression and protein activity, controlling physiological functions of the important human pathogen Staphylococcus aureus Phosphorylations at serine, threonine and tyrosine are known to influence for example protein activity in central metabolic pathways and the more energy-rich phosphorylations at histidine, aspartate or cysteine can be found as part of two component system sensor domains or mediating bacterial virulence. In addition to these well-known phosphorylations, the phosphorylation at arginine residues plays an essential role. Hence, the deletion mutant S. aureus COL ΔptpB (protein tyrosine phosphatase B) was studied because the protein PtpB is assumed to be an arginine phosphatase. A gel-free approach was applied to analyze the changes in the phosphoproteome of the deletion mutant ΔptpB and the wild type in growing cells, thereby focusing on the occurrence of phosphorylation on arginine residues. In order to enhance the reliability of identified phosphorylation sites at arginine residues, a subset of arginine phosphorylated peptides was chemically synthesized. Combined spectral libraries based on phosphoenriched samples, synthetic arginine phosphorylated peptides and classical proteome samples provide a sophisticated tool for the analysis of arginine phosphorylations. This way, 212 proteins phosphorylated on serine, threonine, tyrosine or arginine residues were identified within the mutant ΔptpB and 102 in wild type samples. Among them, 207 arginine phosphosites were identified exclusively within the mutant ΔptpB, widely distributed along the whole bacterial metabolism. This identification of putative targets of PtpB allows further investigation of the physiological relevance of arginine phosphorylations and provides the basis for reliable quantification of arginine phosphorylations in bacteria.


Asunto(s)
Arginina/metabolismo , Proteínas Bacterianas/metabolismo , Staphylococcus aureus/metabolismo , Biblioteca de Péptidos , Péptidos/metabolismo , Fosforilación
14.
J Proteome Res ; 18(1): 265-279, 2019 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-30358407

RESUMEN

The Gram-positive bacterium Staphylococcus aureus plays an important role as an opportunistic pathogen and causative agent of nosocomial infections. As pathophysiological research gained insights into host-specific adaptation and a broad range of virulence mechanisms, S. aureus evolved as a model organism for human pathogens. Hence the investigation of staphylococcal proteome expression and regulation supports the understanding of the pathogenicity and relevant physiology of this organism. This study focused on the analysis of protein regulation by reversible protein phosphorylation, in particular, on arginine residues. Therefore, both proteome and phosphoproteome of S. aureus COL wild type were compared with the arginine phosphatase deletion mutant S. aureus COL ΔptpB under control and stress conditions in a quantitative manner. A gel-free approach, adapted to the special challenges of arginine phosphorylations, was applied to analyze the phosphoproteome of exponential growing cells after oxidative stress caused by sublethal concentrations of H2O2. Together with phenotypic characterization of S. aureus COL ΔptpB, this study disclosed first insights into the physiological role of arginine phosphorylations in Gram-positive pathogens. A spectral library based quantification of phosphopeptides finally allowed us to link arginine phosphorylation to staphylococcal oxidative stress response, amino acid metabolism, and virulence.


Asunto(s)
Adaptación Fisiológica , Arginina/metabolismo , Proteómica/métodos , Staphylococcus aureus/metabolismo , Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica , Humanos , Peróxido de Hidrógeno/farmacología , Estrés Oxidativo , Fosforilación , Proteoma/análisis , Proteoma/metabolismo , Virulencia/efectos de los fármacos
15.
Anal Chem ; 91(18): 11972-11980, 2019 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-31424929

RESUMEN

The field of systems biology has been rapidly developing in the past decade. However, the data produced by "omics" approaches is lagging behind the requirements of this field, especially when it comes to absolute abundances of membrane proteins. In the present study, a novel approach for large-scale absolute quantification of this challenging subset of proteins has been established and evaluated using osmotic stress management in the Gram-positive model bacterium Bacillus subtilis as proof-of-principle precedent. Selected membrane proteins were labeled using a SNAP-tag, which allowed us to visually inspect the enrichment of the membrane fraction by immunoassays. Absolute membrane protein concentrations were determined via shotgun proteomics by spiking crude membrane extracts of chromosomally SNAP-tagged and wild-type B. subtilis strains with protein standards of known concentration. Shotgun data was subsequently calibrated by targeted mass spectrometry using SNAP as an anchor protein, and an enrichment factor was calculated in order to obtain membrane protein copy numbers per square micrometer. The presented approach enabled the accurate determination of physiological changes resulting from imposed hyperosmotic stress, thereby offering a clear visualization of alterations in membrane protein arrangements and shedding light on putative membrane complexes. This straightforward and cost-effective methodology for quantitative proteome studies can be implemented by any research group with mass spectrometry expertise. Importantly, it can be applied to the full spectrum of physiologically relevant conditions, ranging from environmental stresses to the biotechnological production of small molecules and proteins, a field heavily relying on B. subtilis secretion capabilities.


Asunto(s)
Bacillus subtilis/química , Proteínas de la Membrana/análisis , Proteómica , Bacillus subtilis/citología , Inmunoensayo , Presión Osmótica
16.
Int J Med Microbiol ; 308(6): 713-721, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29496408

RESUMEN

Iron is an essential trace element and involved in various key metabolic pathways in bacterial lifestyle. Within the human host, iron is extremely limited. Hence, the ability of bacteria to acquire iron from the environment is critical for a successful infection. Streptococcus pneumoniae (the pneumococcus) is a human pathobiont colonizing symptomless the human respiratory tract, but can also cause various local and invasive infections. To survive and proliferate pneumococci have therefore to adapt their metabolism and virulence factor repertoire to different host compartments. In this study, the response of S. pneumoniae to iron limitation as infection-relevant condition was investigated on the proteome level. The iron limitation was induced by application of the iron chelator 2,2'-bipyridine (BIP) in two different media mimicking different physiological traits. Under these conditions, the influence of the initial iron concentration on pneumococcal protein expression in response to limited iron availability was analyzed. Interestingly, one major difference between these two iron limitation experiments is the regulation of proteins involved in pneumococcal pathogenesis. In iron-poor medium several proteins of this group were downregulated whereas these proteins are upregulated in iron-rich medium. However, iron limitation in both environments led to a strong upregulation of the iron uptake protein PiuA and the significant downregulation of the non-heme iron-containing ferritin Dpr. Based on the results, it is shown that the pneumococcal proteome response to iron limitation is strongly dependent on the initial iron concentration in the medium or the environment.


Asunto(s)
Proteínas Bacterianas/metabolismo , Hierro/metabolismo , Proteoma/efectos de los fármacos , Streptococcus pneumoniae/metabolismo , 2,2'-Dipiridil/química , Proteínas Bacterianas/genética , Medios de Cultivo/química , Proteómica , Streptococcus pneumoniae/genética , Virulencia , Factores de Virulencia/genética , Factores de Virulencia/metabolismo
17.
Mol Cell Proteomics ; 13(9): 2260-76, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24878497

RESUMEN

Systems biology based on high quality absolute quantification data, which are mandatory for the simulation of biological processes, successively becomes important for life sciences. We provide protein concentrations on the level of molecules per cell for more than 700 cytosolic proteins of the Gram-positive model bacterium Bacillus subtilis during adaptation to changing growth conditions. As glucose starvation and heat stress are typical challenges in B. subtilis' natural environment and induce both, specific and general stress and starvation proteins, these conditions were selected as models for starvation and stress responses. Analyzing samples from numerous time points along the bacterial growth curve yielded reliable and physiologically relevant data suitable for modeling of cellular regulation under altered growth conditions. The analysis of the adaptational processes based on protein molecules per cell revealed stress-specific modulation of general adaptive responses in terms of protein amount and proteome composition. Furthermore, analysis of protein repartition during glucose starvation showed that biomass seems to be redistributed from proteins involved in amino acid biosynthesis to enzymes of the central carbon metabolism. In contrast, during heat stress most resources of the cell, namely those from amino acid synthetic pathways, are used to increase the amount of chaperones and proteases. Analysis of dynamical aspects of protein synthesis during heat stress adaptation revealed, that these proteins make up almost 30% of the protein mass accumulated during early phases of this stress.


Asunto(s)
Adaptación Fisiológica/fisiología , Bacillus subtilis/metabolismo , Proteínas Bacterianas/metabolismo , Glucosa/metabolismo , Estrés Fisiológico/fisiología , Calor
18.
Mol Cell Proteomics ; 13(4): 1008-19, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24696501

RESUMEN

In the growing field of systems biology, the knowledge of protein concentrations is highly required to truly understand metabolic and adaptational networks within the cells. Therefore we established a workflow relying on long chromatographic separation and mass spectrometric analysis by data independent, parallel fragmentation of all precursor ions at the same time (LC/MS(E)). By prevention of discrimination of co-eluting low and high abundant peptides a high average sequence coverage of 40% could be achieved, resulting in identification of almost half of the predicted cytosolic proteome of the Gram-positive model organism Bacillus subtilis (>1,050 proteins). Absolute quantification was achieved by correlation of average MS signal intensities of the three most intense peptides of a protein to the signal intensity of a spiked standard protein digest. Comparative analysis with heavily labeled peptides (AQUA approach) showed the use of only one standard digest is sufficient for global quantification. The quantification results covered almost four orders of magnitude, ranging roughly from 10 to 150,000 copies per cell. To prove this method for its biological relevance selected physiological aspects of B. subtilis cells grown under conditions requiring either amino acid synthesis or alternatively amino acid degradation were analyzed. This allowed both in particular the validation of the adjustment of protein levels by known regulatory events and in general a perspective of new insights into bacterial physiology. Within new findings the analysis of "protein costs" of cellular processes is extremely important. Such a comprehensive and detailed characterization of cellular protein concentrations based on data independent, parallel fragmentation in liquid chromatography/mass spectrometry (LC/MS(E)) data has been performed for the first time and should pave the way for future comprehensive quantitative characterization of microorganisms as physiological entities.


Asunto(s)
Bacillus subtilis/metabolismo , Proteínas Bacterianas/análisis , Citosol/metabolismo , Péptidos/química , Aminoácidos/química , Bacillus subtilis/genética , Cromatografía Liquida , Medios de Cultivo/química , Regulación Bacteriana de la Expresión Génica , Espectrometría de Masas , Proteómica , Reproducibilidad de los Resultados
19.
J Bacteriol ; 197(8): 1492-506, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25666134

RESUMEN

UNLABELLED: The PhoPR two-component signal transduction system controls one of three responses activated by Bacillus subtilis to adapt to phosphate-limiting conditions (PHO response). The response involves the production of enzymes and transporters that scavenge for phosphate in the environment and assimilate it into the cell. However, in B. subtilis and some other Firmicutes bacteria, cell wall metabolism is also part of the PHO response due to the high phosphate content of the teichoic acids attached either to peptidoglycan (wall teichoic acid) or to the cytoplasmic membrane (lipoteichoic acid). Prompted by our observation that the phosphorylated WalR (WalR∼P) response regulator binds to more chromosomal loci than are revealed by transcriptome analysis, we established the PhoP∼P bindome in phosphate-limited cells. Here, we show that PhoP∼P binds to the chromosome at 25 loci: 12 are within the promoters of previously identified PhoPR regulon genes, while 13 are newly identified. We extend the role of PhoPR in cell wall metabolism showing that PhoP∼P binds to the promoters of four cell wall-associated operons (ggaAB, yqgS, wapA, and dacA), although none show PhoPR-dependent expression under the conditions of this study. We also show that positive autoregulation of phoPR expression and full induction of the PHO response upon phosphate limitation require PhoP∼P binding to the 3' end of the phoPR operon. IMPORTANCE: The PhoPR two-component system controls one of three responses mounted by B. subtilis to adapt to phosphate limitation (PHO response). Here, establishment of the phosphorylated PhoP (PhoP∼P) bindome enhances our understanding of the PHO response in two important ways. First, PhoPR plays a more extensive role in adaptation to phosphate-limiting conditions than was deduced from transcriptome analyses. Among 13 newly identified binding sites, 4 are cell wall associated (ggaAB, yqgS, wapA, and dacA), revealing that PhoPR has an extended involvement in cell wall metabolism. Second, amplification of the PHO response must occur by a novel mechanism since positive autoregulation of phoPR expression requires PhoP∼P binding to the 3' end of the operon.


Asunto(s)
Bacillus subtilis/metabolismo , Proteínas Bacterianas/metabolismo , Cromosomas Bacterianos/metabolismo , ADN Bacteriano/metabolismo , Genoma Bacteriano , Fosfatos/metabolismo , Secuencia de Aminoácidos , Bacillus subtilis/genética , Proteínas Bacterianas/genética , Cromosomas Bacterianos/genética , ADN Bacteriano/genética , Regulación Bacteriana de la Expresión Génica/fisiología , Datos de Secuencia Molecular , Operón , Fosforilación , Unión Proteica , ARN Bacteriano/genética , ARN Bacteriano/metabolismo
20.
Environ Microbiol ; 16(6): 1898-917, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24571712

RESUMEN

The Gram-positive bacterium Bacillus subtilis encounters nutrient limitations and osmotic stress in its natural soil ecosystem. To ensure survival and sustain growth, highly integrated adaptive responses are required. Here, we investigated the system-wide response of B. subtilis to different, simultaneously imposed stresses. To address the anticipated complexity of the cellular response networks, we combined chemostat experiments under conditions of carbon limitation, salt stress and osmoprotection with multi-omics analyses of the transcriptome, proteome, metabolome and fluxome. Surprisingly, the flux through central carbon and energy metabolism is very robust under all conditions studied. The key to achieve this robustness is the adjustment of the biocatalytic machinery to compensate for solvent-induced impairment of enzymatic activities during osmotic stress. Specifically, increased production of several enzymes of central carbon metabolism compensates for their reduced activity in the presence of high salt. A major response of the cell during osmotic stress is the production of the compatible solute proline. This is achieved through the concerted adjustment of multiple reactions around the 2-oxoglutarate node, which drives metabolism towards the proline precursor glutamate. The fine-tuning of the transcriptional and metabolic networks involves functional modules that overarch the individual pathways.


Asunto(s)
Bacillus subtilis/metabolismo , Tolerancia a la Sal , Bacillus subtilis/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Betaína/metabolismo , Metabolismo de los Hidratos de Carbono , Análisis por Conglomerados , Metabolismo Energético , Regulación Bacteriana de la Expresión Génica , Análisis de Flujos Metabólicos , Redes y Vías Metabólicas , Presión Osmótica , Proteoma/genética , Proteoma/metabolismo , Transcriptoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA